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ABSTRACT 

 Wireless Sensor Networks (WSNs) are a relatively new technology with many 

potential applications, including military and homeland security surveillance operations.  

Accurate classification of WSN contacts has been attempted using various sensor 

combinations over the past few years, yet video and photographic imagery remain the 

only choices for attaining context specific contact classification.  While cameras have 

been successfully installed within some WSNs, there are serious limitations to this 

solution.  Most stemming from the scarce power resources, immobility, and small form 

factor common among conventional WSN nodes.  An efficient, low cost answer to this 

problem involves the use of unmanned aerial vehicles (UAVs) to acquire imagery of 

WSN contacts.  For this system to scale to the wide expanses that WSNs deploy over, 

UAV contact surveillance operations must be controlled autonomously.  The objective of 

this thesis is to research and implement an autonomous UAV—WSN system, where an 

optimized two-dimensional flight plan is produced in response to WSN contact detection.  

Flight plans autonomously guide the UAV on a course to either an estimated interception 

point with the WSN contact or to the instigated WSN cluster, depending upon user input.  

The event driven application produced in this study functions in the periphery of the 

Kestrel Autopilot System, communicating flight plans to the UAV through properly 

crafted Kestrel packets.    
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I. INTRODUCTION 

A. MOTIVATION 
Wireless sensor networks (WSNs) have the potential to revolutionize the way our 

military and law enforcement combat today’s most pressing issues such as the drug trade, 

illegal immigration, terrorism and human trafficking.  They are a viable solution to the 

growing need for manpower to watch expansive foreign and domestic borders and other 

hotbeds for the aforementioned illegal activities.  Once deployed, a wireless sensor 

network will automatically sense and report anything that moves through it while 

collecting a variety of data that can be used to classify each contact.  A properly 

orchestrated wireless sensor network would make it possible for one man to stand watch 

over an area that would otherwise require the assistance of many more.  The utilization of 

this technology will not only improve the efficiency of US and Coalition forces, it will 

save resources and lives.  With the accurate, real-time intelligence supplied, proportional 

responses can be mounted against any intrusion, ensuring threats are always met with an 

adequate reactionary force. 

Information superiority is vital to the success of US and Coalition Forces against 

an increasingly asymmetrical enemy.  The Global War on Terrorism will probably never 

truly end; however, it will be intelligence, not overwhelming firepower that brings about 

periodic victories.  The ability to deploy various sensors along sensitive borders and in 

other areas of interest would significantly improve the United State’s intelligence 

collection capacity.  WSNs have the potential to become the eyes and ears of the United 

States military, dissolving the need for a persistent, predictable physical presence during 

surveillance or defensive operations.   

B. PROBLEM 

The level of response, if any, that a WSN contact warrants is difficult to evaluate.  

WSNs can send an alert upon the detection of a contact detailing its speed and a 

reasonably accurate guess as to what the contact is.   The most advanced of which can 

distinguish between a man and a machine with the help of a magnetometer.  The 

contact’s sound resonance can also be used to assist in further narrowing down its 
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classification.  But even sensor networks outfitted with this level of sophistication fall 

prey to the same shortcomings as their predecessors.  Sensor networks cannot tell what 

flag is painted on the side of a passing truck, what activity the contact is engaged in, if 

there is a warrant out for a contact’s arrest, or any other context specific information.  It 

is unrealistic to expect a reconnaissance team to investigate each contact, especially in a 

high traffic area.    

Logic would suggest attaching a camera, actuated in the presence of a contact, to 

the WSN motes themselves, and this was in fact the topic of several master’s theses.  

While it is a worthwhile addition, this implementation is not a sufficient standalone 

solution.  There is no guarantee a stationary mote camera would be in a position to 

acquire useful footage.  Sensor network motes are designed to stay out of sight, meaning 

most have a small stature and are easily obscured by vegetation.  Additionally, barring 

the case where a sensor network is deployed along a road, many of its contacts will not 

behave in an ideal manner.  Some contacts may pass through the center of the network, 

but others may blow through the outside corner.  If a stationary camera is able to acquire 

footage in this situation, it is unlikely that it would provide an informative angle.  Finally, 

a mote camera would be limited to its surrounding area, leaving the network 

administrator to assess the situation with only a small piece of the overall picture.        

C. SOLUTION 

Unmanned aerial vehicles (UAVs) when integrated with a WSN can be used to 

capture video of a WSN contact, which would then be viewed by a human operator to 

determine the appropriate level of response.  They have the flexibility to move with a 

contact, even after it has left the reach of its associated WSN.  They can provide a bird’s 

eye view of the surrounding area, allowing the network administrator to ascertain a 

contact situation in its entirety.  After all, one sensor network contact may be the first 

soldier in a long convoy.  UAVs can be manually controlled or programmed to position 

themselves in the most advantageous vantage point to acquire quality footage of a 

contact.  The latter of which roughly describes one aspect of a fully autonomous system, 

where an interesting contact would automatically trigger the launch of a UAV for further 

inspection.  This automation is key to the scalability potential of the WSN—UAV system 

and to the reduction in the number of administrators required to watch a specific area.           
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D. SCOPE/ORGANIZATION 

This thesis first investigates the three main components that together form the 

WSN—UAV system.  These are the WSN, the UAV, and the hardware/software that 

enables the two to communicate.  The coverage of Chapter II extends to all three.  First, 

an overview of current WSN technology will be conducted, as an understanding of this 

technology is essential for any reader to appreciate the ideas presented in this thesis, as 

well as the motivation driving this endeavor.  Accordingly, prior work investigating the 

viability of outfitting WSN motes with cameras is included in this section.  Second, the 

Unicorn and MMALV UAV platforms utilized in this study are profiled.  The third 

background section explores the Kestrel Autopilot System provided by Procerus, the 

company responsible for the Unicorn in its entirety and the most of the MMALV 

internals.  The Kestrel Autopilot System is a collection of hardware and software that 

enables the UAV to be autonomously controlled from the ground.    

The main focus of this thesis is in the automation of the UAV from the point of 

WSN contact data receipt, to UAV—contact interception.  This research produced an 

application capable of guiding any UAV utilizing the Kestrel Autopilot System from its 

current location to the estimated position of a WSN contact, along an optimized path.  

The design and implementation of this software is detailed in Chapter III, and the 

accuracy of its calculations are evaluated in Chapter IV.    
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II. BACKGROUND 

A. INTRODUCTION 

An examination of the component hardware and software necessary to implement 

an autonomous UAV—WSN system is detailed in this chapter.  We will begin with an 

overview of WSN technology and its developmental state, and follow with a look at the 

work completed by others in the realm of WSN contact classification.  Then the UAV 

platforms used during this study are featured as well as the autonomous autopilot package 

used to control them.  It is hoped that the information provided here will aid the reader in 

both their appreciation and analysis of the autonomous UAV—WSN integration project 

introduced in Chapter III.    

B. WIRELESS SENSOR NETWORKS 

Wireless sensor networks (WSN) represent the fusing of two well known 

technologies into one functional system.  Both wireless networks and environmental 

sensors have received much attention in the way of research and constructive 

development.  However, the evolution of WSNs is a relatively new phenomenon that has 

opened the doors to many exciting advances in the realm of pervasive computing.     

1. Introduction to Wireless Sensor Networks (WSNs) 

A WSN is an interconnected ad-hoc mesh system of small, low-cost sensing 

nodes that send observed sensory data to a specific collection node over radio frequency 

(RF) communication.  These sensor nodes are commonly composed of a “processing unit 

with limited computational power and limited memory, sensors (including specific 

conditioning circuitry), a communication device, and a power source in the form of a 

battery” (Wikipedia:  “Wireless Sensor Network,” 2006).    

The purpose of these networks is to autonomously collect various data about an 

operational environment.  Theoretically, hundreds or even thousands of these low cost 

nodes could be deployed in an operational area of interest.  Upon deployment, sensor 

nodes automatically collaborate and form a meshed network supported by RF 

communication, then begin collecting sensor data without any assistance or input from 

the user.  This self-organizing characteristic is intrinsic to all ad-hoc devices.  The 
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meshed nature of inter-node communications yields a self-healing wireless network, 

ensuring node connectivity is as adaptable as hardware and power limitations will allow.    

Sensor data from each sensor node must be sent to a collection node for it to be 

utilized.  This collection point usually houses user applications that parse and display the 

data in a viewable form.  There are many networking architectures and routing schemes 

that support the movement of data from one network node to another; however, special 

consideration must be taken in the case of WSNs because the method employed can 

weigh heavily on each node’s limited battery life.        

 
Figure 1.   Wireless Sensor Network (From:  Lewis, 2004) 

 
2. Applications 

WSNs can be constructively applied to almost any situation where additional 

information about one’s environment would be helpful.  It is difficult to imagine any 

activity where a wider awareness of one’s surroundings would not improve the safety or 

effectiveness of the endeavor.  Thus the potential applications of this technology are 

numerous and varied.  It is perhaps easiest to organize a discussion as to the relevancy of 

WSNs in the manner dictated by Culler, Estrin and Srivastava.  The multitude of both 
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potential and realized uses for WSNs can be roughly categorized into those that observe 

“space, things or the interactions of things” (Culler, David, Estrin and Srivastava, 2006). 

The activities mentioned here in no way constitute a conclusive list of each 

category’s occupants.  That said, some of the applications falling into the first group are 

environmental, biocomplexity (Estrin, Srivastava and Sayeed, 2002) and seismic 

monitoring, military surveillance, international border/treaty enforcement, indoor climate 

control, and precision agriculture (Culler, David, Estrin and Srivastava, 2006).  The 

second group includes inventory tracking, centralized control over home appliances, 

health monitoring, “condition-based equipment maintenance” (Culler, David, Estrin and 

Srivastava, 2006), and structural analysis (Bharathidasan, Archana and Ponduru, 2006).  

Some of the most profound WSN applications observe the interactions of various entities 

within a system.  These include ecosystem monitoring, asset tracking, disaster recovery, 

contaminant transport, educational tools, interactive toys, and ubiquitous computing 

support.        

3. Wireless Sensor Network Characteristics  

a. Wireless Sensor Nodes 
Wireless sensor nodes have a number of defining features.  Network nodes 

are small, lightweight, low cost, and are expected to function for extended periods of time 

under the constrictions of very limited energy resources.  In some WSNs, more than one 

type of node is used to perform the various tasks that the network requires.  There are a 

number of workable variations that can be made to a basic heterogeneous WSN.  But the 

idea in its most general form is that there are at least two functional subsets into which a 

network’s nodes fall; whether these subsets are distinguished by differences in a node’s 

hardware, software, middleware or physical appearance is not of consequence.  For 

example, consider a system whereby one type of node collects sensory data and the 

other’s sole responsibility is to create a data sink into which sensory nodes report their 

observations.  In another common variant of the heterogeneous variety, all nodes within 

the network collect sensory data, and the only distinction between them exists in a node’s  
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logical stature within the network’s data flow hierarchy.  The alternative to utilizing 

several different node types is of course a homogenous system, where each node 

performs the same role.   

b. Network Architectures 
Given a WSN with heterogeneous nodes, data aggregation at one point in 

the network promotes comprehensive sensory updates and centralized control.  Cluster 

architectures were developed decades ago to control the flow of data within wireless 

networks.  This architecture type is a good fit for WSNs, as it supports efficient 

communications and scalability (Al-Karaki, “Handbook of Sensor Networks”).  Cluster 

architectures are logically built upon a tree structure, with all data flowing to one or more 

root nodes.  More specifically, nodes positioned within the same general locality pass 

data to a cluster head (CH), which forwards the data to a base station (BS) for processing.  

Although this allows sensory data from large portions or the entire network to be 

collected, processed and displayed to the user at one point, the base station as well as the 

other nodes residing at a similar hierarchical level will bear the brunt of the network 

traffic and communications overhead. 

 

Figure 2.   Multihop clustering architecture (Yarvis and Ye, 2005) 
 

Layered architectures are able to exploit the relative low cost of 

homogeneous nodes.  Nodes are grouped into layers based on their hop count from the 

network BS.  Protocols that function according to this architecture attempt to minimize 

the RF range of the nodes composing each layer, balancing energy consumption against 

network interconnectivity.   The Unified Network Protocol Framework (UNPF) is a set of 
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such protocols.  UNPF protocols perform a series of three steps to caste the network into 

layers and govern inter-node communications.  In the first step, commonly referred to as 

the network initialization, the BS transmits a unique discovery message over a network 

control channel.  Nodes close enough to receive this message form the first layer.  These 

nodes then transmit their own control channel discovery messages, and the receiving 

nodes become layer two.  This continues until there is no response to a layer’s discovery 

messages.  Sensory data can then begin to flow from one layer to the next toward the 

network BS.  UNPF protocols initiate the node discovery and layering process 

periodically to account for failing or displaced nodes.                        

 

Figure 3.   Layered Network Architecture (From:  Murthy and Manoj,  2004) 
 

4. Power Management Considerations 

WSN nodes must function under extreme power consumption frugality due to the 

physical characteristics WSN nodes are expected to exhibit and the desire for nodes to 

function in a self-sufficient manner for as long as possible.  They must remain small to 

avoid being seen and therefore cannot house a large power source.  They must be 

lightweight to support rapid deployment scenarios and as a result cannot incur the added 

weight of a heavy power source.  Generally, cutting edge portable power sources are too 

expensive to incorporate into a device that is designed to be low-cost and/or disposable.  
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In many of the applications for which they were designed, circumstances make it either 

impractical or unsafe to change the batteries of a node once deployed in its area of 

operation.  These demands place considerable restriction on an already limited field of 

available portable power technologies.  Regardless of a node’s portable power source, if 

its power supply is not renewable, careful power management will always play a 

significant roll in the node’s longevity. 

 

Figure 4.   WSN node RF Transmission/Receive/Process Energy Consumption 
(From: Estrin, Srivastava and Sayeed, 2002) 

 
a. Routing Protocols 

There are many routing protocols that have been applied to WSNs, and 

they can be categorized into one of two groups:  those that take power management into 

consideration and those that do not.  Most members of the latter group utilize some 

variant of a technique called flooding, in which nodes broadcast received packets to each 

of their neighbors, regardless of whether or not a destination node has already received 

the packet (Bharathidasan, Archana and Ponduru, 2006).  This routing scheme is 

inefficient because resources are wasted sending a packet to nodes that already have it.  

Typically, a simplistic approach such as this will also lack the functionality to adapt its 

routing scheme to the network’s dynamic energy landscape.  There are obviously many 

routing protocols that make no effort to avoid gross energy consumption inefficiencies, 

but the following focuses on a few of the sophisticated approaches that do.   

Sensor Protocols for Information via Negotiation (SPIN) is a class of 

WSN routing protocols that includes SPIN-PP, SPIN-EC, SPIN-BC, and SPIN-RL 

(Bharathidasan, Archana and Ponduru, 2006).  These protocols employ two power-saving 

methods.  First, SPIN nodes negotiate communications before transferring data.  Using 
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imbedded information descriptors (meta-data) detailing the contents of the intended 

transfer, a SPIN node broadcasts an “ADV message” to its neighbors before any data is 

sent to prevent wasting resources sending the data to a node that already has it (Kulik, 

Heinzelman and Balakrishnan, 2002).  Nodes that do not yet have the data send a “REQ 

message” to the source of the ADV message (Kulik, Heinzelman and Balakrishnan, 

2002).  The initiating node then sends a “DATA message” containing the actual data and 

a meta-data header that aids the destination in associating the DATA message with its 

REQ (Bharathidasan, Archana and Ponduru, 2006).  The second power saving technique 

SPIN protocols employ is they force nodes to “poll a resource manager” before 

communicating or processing received packets to ensure they have enough power to 

perform the operation and continue functioning regularly.        

In Shah and Rabaey’s 2002 paper, “Energy Aware Routing for Low 

Energy Ad Hoc Sensor Networks,” they describe “a destination initiated reactive 

protocol…that instead of maintaining one optimal path, maintains a set of good paths that 

are chosen from by means of a probability which depends on how low the energy 

consumption of each path is” (Bharathidasan, Archana and Ponduru, 2006).  Some 

“energy efficient” protocols find the path of least energy consumption and continually 

utilize that route until the nodes in it are depleted.  Failure of nodes along a particular 

path could leave a section of the WSN alienated from the sensor data collection point.  

Shah and Rabaey’s method forces the WSN to utilize its combined energy reserves, 

allowing node resources to deplete collectively.  Nodes in this scheme use localized 

packet flooding to set up routing (interest) tables (Shah and Rabaey, 2002).  Several paths 

are created to each destination.  Paths that have high energy costs relative to the other 

options are discarded and a proportion is assigned to each remaining path based on the 

energy cost required to use it.  When data is sent across the network, nodes select a 

destination path probabilistically from the choices found in their interest tables (Shah and 

Rabaey, 2002). 

Directed diffusion is a data-centric routing scheme in which nodes request 

data by broadcasting an ‘interest’ to their neighbors (Intanagonwiwat, Govindan and 

Estrin, 2000).  Gradients are established within the network, detailing the direction data 

associated with a specific interest should be sent upon receipt.  These gradients point 
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back to the node that originally broadcasted the interest request (see Figure 5).  When 

nodes within the WSN receive data matching the interest request, nodes begin sending 

the data down many different paths, in the direction of the established gradients.  “The 

sensor network reinforces one, or a small number of these paths” (Intanagonwiwat, 

Govindan and Estrin, 2000).  This routing paradigm improves WSN energy economy 

because the decision as to which path is reinforced can incorporate energy considerations.  

Additionally, once interest paths are reinforced nodes recognize where to pass different 

data, saving them from costly flooding or destination finding operations. 

 
Figure 5.   Directed Diffusion Routing (From:  Intanagonwiwat, Govindan and Estrin, 

2000) 
 

b. Redundancy vs. Power Economy 

A delicate balance must be maintained between the redundancy of the 

WSN mesh and the energy draw of its nodes.  Stronger RF transmissions give nodes a 

longer communications range, which allows them to mesh with a larger number of their 

counterparts.  This adds to the number of routing paths available to each node, enabling 

them to route around failing neighbors or adjust to a change in topology.  However, the 

increased redundancy of the mesh comes at a high energy cost.  RF communications 

draw substantially more power as their range is increased.    

c. Sensor Power Saving Strategies  
The energy resources required to support a node’s sensors can be 

minimized through selective use of passive and active sensors, and by decreasing the 

range of active sensors.  In one selective use implementation, nodes only turn on power 
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hungry sensors (such as GPS, cameras, sonar, etc.) when alerted to the presence of a 

contact by low-power sensors (such as barometers, thermometers, magnetometers, etc.).  

Another variant to this idea involves modifying internal nodes to leave their sensors off 

until a contact is detected by nodes along the WSN perimeter.  The obvious drawback to 

this design is that perimeter nodes will exhaust their energy reserves well before those in 

the interior.  Given that nodes are able to sense their location relative to one another and 

adjust their sensor settings accordingly, the WSN will shrink as each perimeter node dies.   

But the longevity of the system will be extended considerably.   

d. Time Division Multiple Access 
Time Division Multiple Access (TDMA) is a bandwidth sharing scheme 

that allots a specific time slot to each RF network interface.  It requires nodes to have 

synchronized clocks.  TDMA can save WSNs significant energy resources because it 

allows nodes to turn off their radio while it is not their turn to transmit or receive.     

e. Sustainable Power 
Looking to the future, outfitting each node with solar power collection 

cells seems to be the most promising solution to a survivable power supply.  As Figure 6 

shows, this technology is not tractable to indoor environments.  Sustainable WSNs will 

only support low-power sensor types, since the usable energy will consist only of what 

can be replaced through solar-power collection.  The small form factor nodes are 

expected to exhibit will not lend favorably to their collection potential, and solar-power 

collection is currently an inefficient energy conversion process.  The present state of solar 

power technology will not allow for the support of most WSNs in a sustainable manner.  

However, solar energy can in most circumstances be counted upon to prolong the life of 

any outdoor WSN significantly.                   

 



14

 

Figure 6.   Power source density (From:  Estrin, Deborah, Mani Srivastava, and 
Akbar Sayeed, 2002) 

 
5. Confidentiality, Integrity and Accessibility  

The security threats to WSNs are as diverse as their applications are varied.  One 

must consider the fact that many WSN applications necessitate deployment and operation 

in hostile environments.  For example, military WSN security concerns include the 

proliferation of data to opposition forces, resource accessibility and the authenticity of 

gathered data.  Hostile environments are not limited to the physical realm.  It can be said 

that a wireless network is always in a hostile environment, as anyone could attempt to 

break into or capture packets from the network at any time.  Luckily, there are some 

precautions that can be employed to make one’s WSN more secure.  

a. Confidentiality, Integrity, Authenticity 

Since WSNs are ad-hoc systems, users must be concerned about where 

their data came from, who has seen it and whether it has been modified.  With no 

safeguards in place, the network would happily connect to and receive sensory data from 

a malicious user posing as a legitimate node.  This aspect of wireless security is rather 

straight forward.  A properly orchestrated encryption scheme can guarantee 

confidentiality, integrity and authenticity (of sensory data).  Encrypted packets will be 
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indecipherable to those who are not permitted to view the WSN data.  Packets that are 

created or modified by any entity other than a valid network node will decrypt into 

gibberish and be discarded.  In military and law enforcement applications, the encryption 

key must not be attainable through physical access to a node.        

b. Accessibility 
The wireless nature of these networks makes it nearly impossible to 

guarantee users persistent accessibility.  Denial of service (DoS) attacks are the Achilles’ 

heel of wireless networks.  With the proper equipment, this is the easiest way to disable a 

WSN.  All wireless networks lack the inherent (OSI model) physical layer security built 

into a wired network.  “Malicious packets can not be prevented from reaching an access 

point or client as opposed to wired networks where some filtering can be employed or 

access to a network port can be controlled” (Egli, 2006).  Wireless networks also differ 

from wired networks at layer two of the OSI model.  The function of the data link layer is 

to administer the wireless protocol that mediates access to the physical layer.  Above 

layer two, there ceases to be a distinction between wired and wireless networks.    

WSN nodes do not have the power resources to transmit RF signals at a 

high enough decibel level to thwart close physical layer DoS radio jamming attacks.  

“Fortunately physical layer attacks are also difficult to execute since the power of a signal 

loses 6dB when doubling the distance between sender and receiver” (Egli, 2006).  If a 

WSN is spread over a large enough distance, a physical layer DoS attack would both alert 

network administrators to the presence of a hostile contact and indicate the assailant’s 

general location.   

Layer 2 DoS attacks are much easier to carry out.  These attacks disrupt 

the function of the wireless protocol, usually through some form of bogus packet 

injection.  For example, flooding nodes with replayed routing packets will quickly 

deplete their limited resources and possibly cause enough congestion to bring the network 

to a stop.  Even if nodes employ some form of encryption, receive and decrypt operations 

become much more costly and dangerous to the network’s energy supply when multiplied 

over thousands or millions of spurious packets.       
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Figure 7.   DoS attacks at each OSI layer (From:  Egli, 2006) 

 
6. Locality of Reference 

The data collected by a WSN engaged in spatial monitoring would not be of much 

use without some idea as to where it came from.  These applications are based on the 

acquisition of various measurements describing a specific locale of the WSNs operational 

area.   

WSNs are generally composed of many nodes distributed over a large area.  

Incoming data is associated with a specific node through some form of addressing/header 

scheme, and this information is commonly coupled with the node’s positional data.  

Whether a node’s location is referenced with respect to another node or calculated 

independently by each node (through GPS, inertial navigation, etc.), the same effect is 

achieved.         

7. TinyOS 

Considering the limited memory, processing power and energy resources 

available in wireless sensor nodes, most standard operating systems are too resource 

hungry to sustain the levels of operative concurrency they require (TinyOS, 2006).  

TinyOS is an open-source, lightweight operating system designed specifically for such a 

role (Hill, Szewczyk, Woo, Hollar, Culler and Pister, 2006).  It “is developed by a 

consortium led by the University of California, Berkley in cooperation with Intel 

Research” (Wikipedia:  “TinyOS,” 2006).  This event-driven environment is built to 
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provide users with a constructive basis from which to develop small, efficient wireless 

sensor node applications (TinyOS, 2006).  When called upon, built-in modules provide 

interfaces to particular data and services.  Typically, this entails retrieving sensor outputs 

or handling device I/O (Wikipedia:  “TinyOS,” 2006).  TinyOS also comes with a 

“component library,” which “includes network protocols, distributed services, sensor 

drivers, and data acquisition tools—all of which can be used as-is or be further refined for 

a custom application” (TinyOS, 2006).  With the aforementioned details abstracted to a 

particular module interface or library, users can focus on the functionality of their 

applications, rather than their supporting infrastructure.       

C. OBJECT TRACKING APPLICATION 

In 2005, a master’s thesis completed by Vlasios Salatas implemented an 

application addressing the problem of contact detection and tracking through a sensor 

network.  This application was simply referred to as the Object Tracking Application v1 

(OTAv1).     

1. Sensor Network Hardware/Software 

OTAv1 operates on the periphery of a WSN developed by Crossbow 

Technologies.  Crossbow is the self-purported “leading full-solutions supplier in the 

wireless sensor networking arena” (www.xbow.com).  They offer a variety of products 

that range from full WSN solutions to supporting software and peripheral sensor network 

components.  OTAv1 was designed to run in conjunction with the MSP410 Mote 

Security System.   

The MSP410 System is geared toward security applications, and is maintained on 

the Crossbow product line for use in security applications (Crossbow Technology, 2006).  

Its role in supporting the OTAv1 requires it to function in a similar capacity. 
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Figure 8.   MSP410 Mote Security System Components:  8 motes and 1 base station 
(From:  www.xbow.com)   

 

The MSP410 System is composed of three layers.  Eight battery-powered motes 

sense each other’s presence and connect to form a wireless ad-hoc mesh network upon 

deployment.  MSP410 motes come from their manufacturer (Crossbow) with a pre-

installed sensor suite.  Each mote is armed with a 2-axis magnetometer, four passive 

infrared (PIR) detectors, and a dormant microphone.  The mote layer, comprised of these 

8 sensor motes, is responsible for collecting various sensor data in the area of operation.  

The flow of data in the mote layer is logically organized into a tree formation rooted at 

the system’s BS.  The Crossbow MBR410 Base Station makes up the “server layer” of 

the system.  The server layer collects sensor and connectivity data from the mote mesh 

and puts it onto an RS-232 connection destined for a computer running MOTE-VIEW 

1.2.     
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Figure 9.   Layer Structure of the MSP410 Mote Security System (From:  Crossbow 
Technology, 2006) 

 

MOTE-VIEW was “designed to be an interface (‘client layer’) between a user and 

a deployed network of wireless sensors” (Crossbow Technology, 2006).  It presents the 

sensor data streaming from the MSP410 base station in graphical diagrams and tables that 

are easily read and understood by the typical user.  Figure 10 shows the layout of the 

“Data” tab in MOTE-VIEW.  This view allows the user to monitor all the sensor values 

coming from the each deployed mote as well as each mote’s voltage.  Figure 11 presents 

an example of one of several graphical diagrams that MOTE-VIEW is capable of 

constructing to aid the user in his/her understanding of sensor data.     
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Figure 10.     Sensor data from the MSP410 Mote Security System populating MOTE-

VIEW (From:  Crossbow Technology, 2006) 
 

 

Figure 11.   A topological view of the MSP410 Mote Security System depicting 
temperature readings in MOTE-VIEW (From:  Crossbow Technology, 2006) 
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2. OTAv1 

OTAv1 takes a continuous stream of sensor data from the WSN and analyzes this 

data for any indication as to the presence of a contact.  If a contact is detected, OTAv1 

outputs whether the contact is a human or a vehicle, the contact’s speed and the contact’s 

direction of travel through the WSN.  This application is not only valuable for the 

descriptive data it provides on each contact, its ability to sense when a contact has entered 

the WSN can be used as an actuator to start other programs or devices.  The software 

produced by Crossbow to support their WSNs can display mote sensor values in various 

user-friendly charts and diagrams; however, none of them contain the functionality to 

differentiate between mote sensor fluctuations and the presence of a contact within the 

WSN.      

3. Object Tracking Scenarios 

The focus of the Object Tracking Application project was to develop a WSN 

system for detecting contacts along an established path of travel.  Thus, the application 

was limited to three scenarios.  Users are responsible for correctly determining which 

scenario is appropriate for their particular situation.  In each of these scenarios, OTAv1 

expects that its associated WSN is deployed along a road, path or corridor.  Although 

they represent simple path behavior abstractions, the applicability of the available 

scenarios is quite extensive, serving to ensure the program’s value in both an indoor and 

outdoor operating environment.   

The first of OTAv1’s allowable scenarios is that of a WSN positioned along a 

straight road.  The motes may be positioned either staggered on either side of the road (as 

in Figure 12) or in single file along one edge of the road.  The deployment pattern one 

chooses is dependent upon the specific situational.  For example, if the road is wide, it 

would be wise to deploy the motes on both sides of the road to avoid missing contacts on 

the far edge.        
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Figure 12.   Topology overview of OTAv1 straight road scenario (From:  Salatas, 
2005)  

 

The second and third scenarios are relatively similar to the first.  They handle a T-

road and 4-way intersection respectively.  The mote topology is a relatively simple 

extension on the straight road scenario with one exception.  In the T-road scenario, the 

data from two of the PIR sensors in the mote positioned at the intersection is 

incorporated.  Likewise, the 4-way intersection scenario calls for the two motes 

positioned in its intersection to utilize two of their PIR sensors.      



23

 

Figure 13.   Topology overview of OTAv1 T-road scenario (From:  Salatas, 2005) 
 

 

Figure 14.     Topology overview of OTAv1 4-way intersection scenario (From:  
Salatas, 2005) 
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4. Contact Detection 

Once the WSN is deployed in an appropriate pattern, OTAv1 can begin 

functioning as it was intended.  OTAv1 detects contacts through a system of thresholds 

based on the values of each mote’s magnetometer and PIR sensors.  If any of the motes 

positioned at an extremity of a particular deployment scheme register a PIR or 

magnetometer reading that is greater than or equal to a predetermined value, the entrance 

of a contact is assumed and reported.   

5. Object Identification 

Once detected, contacts must be categorized as well as possible given the 

resources of the WSN.  In this case, OTAv1 has access to magnetometer readings, PIR 

sensor values and all the requisite information for determining a contact’s speed and 

direction.  OTAv1 takes a logical approach towards classification in its assumption that 

vehicles will register relatively high magnetometer readings, while human contacts will 

not.  Based solely on this metric, OTAv1 makes a determination as to whether a contact 

is a human or a vehicle.  The speed with which a contact passes through the WSN is 

determined by tracking the time from initial contact detection to its appearance on the 

PIR sensor readings of motes deployed further down the road.  Based on the distance 

between motes and the time it took for the contact to reach each successive mote, a 

reasonably accurate estimation of the contacts speed can be made.  The contact’s 

direction of travel is assumed to be the same as the progressive PIR sensor spikes that it 

causes as it passes through the WSN.       

6. TRSSv3  

As discussed in the Chapter I, section B, several master’s theses have explored the 

integration of wireless cameras into sensor motes.  One of the objectives of OTAv1 was 

to serve as the actuator for such a system.  After all, the cameras can not be expected to 

continuously snap pictures or record video on a mote’s extremely limited battery supply.     

The camera integration scheme for which OTAv1 was designed to complement 

was developed by Brian Dixon and William Felts at the Naval Postgraduate School in 

2005 and is called the Tactical Remote Sensor System (TRSSv3).  The hardware 

components comprising TRSSv3 are one FTP server, one Globalstar Satellite phone per 
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mote, one 4XEM Elite2 miniPC per mote and one Creative WebCam per mote.  TRSSv3 

takes photos of WSN contacts using Creative WebCams upon the issuance of a contact 

alert by OTAv1.  The cameras are triggered at the correct time through consideration of 

the contact speed, as estimated by OTAv1, and knowledge of their distance from the 

outlying WSN motes.  After snapping a photo, the Creative WebCam passes its picture to 

a 4XEM Elite2 miniPC, which in turn forwards the picture through standard Internet 

routing to a Globalstar Satellite phone uplink and onto the Internet.  The address of these 

forwarded packets is that of the FTP server, which waits for incoming pictures to host.  

The end result of this system is multiple hosted pictures of each contact hosted on an ftp 

server accessible to anyone with an Internet connection.   

 

Figure 15.     TRSSv3 and OTAv1 WSN System Overview (From:  Salatas, 2005) 
 

Between OTAv1 and TRSSv3, the user acquires several pictures of each contact, 

each contact’s speed and direction, and an automated classification as to whether the 

contact is a human or a vehicle.  While the results of the automated classification in 
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OTAv1 will be obvious to any human viewing the pictures from TRSSv3, the ability for 

the program to distinguish between people and vehicles is important if the user wishes to 

implement a filtering mechanism that performs a particular action depending upon the 

type of the contact.         

D. UAV PLATFORMS 

Although the Kestrel Autopilot System is compatible with a wide range of UAV 

platforms, only two particular aircraft were utilized during the course of this study.  The 

Procerus Unicorn, developed by Procerus technologies, was used as a test platform for 

developing autonomous autopilot applications and exploring various ideas.  The second 

platform is still under development, but will no doubt play a major role within the 

autonomous UAV—WSN system.  The Morphing Micro Air-Land Vehicle (MMALV) 

was designed to take advantage of efficient locomotion models found in nature (Boria, 

Bachmann, Ifju, Quinn, Vaidyanathan, Perry and Wagener, “A Sensor Platform Capable 

of Aerial and Terrestrial Locomotion”).  MMALV is the result of two merged 

technologies; the Micro Air Vehicle (MAV) developed by the University of Florida, and 

the Mini-WhegTM, developed at Case Western Reserve University.  These award-

winning, lightweight solutions were integrated to produce a UAV capable of aerial and 

terrestrial locomotion.          

 

Figure 16.   MMALV in flight (From:  Boria, Bachmann, Ifju, Quinn, Vaidyanathan, 
Perry and Wagener, “A Sensor Platform Capable of Aerial and Terrestrial 

Locomotion”)  
 

1. Procerus Unicorn  

a. Physical Characteristics 
The Unicorn has an angled, triangular shaped chassis that measures 48 

inches from wing tip to wing tip (see Figure 17).  Its body is constructed with EPP foam, 
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making this platform particularly durable, inexpensive, and lightweight, weighing in at 

mere 24 oz (with prop, motor, servos and speed control) (Procerus Technologies:  “UAV 

Test Platform,” 2006).  Propulsion is provided by a “brushless electric motor” that drives 

a rear push propeller (Procerus Technologies:  “UAV Test Platform,” 2006).  The 

Unicorn’s left and right elevons give it directional control, while winglets at either end 

“lower the lift-induced drag caused by wingtip vortices” (Wikipedia:  “Winglet,” 2006).    

 
Figure 17.   Procerus Unicorn, overhead view (After:  Procerus Technologies:  “UAV 

Test Platform,” 2006) 
 

With reference to Figure 17, the brown square found on the right half of 

the Unicorn is the base to which the GPS module is attached.  The particular GPS unit 

utilized in this platform is the Furuno GH-81D.  Shifting focus to the center of the 

Unicorn’s frame, there are two compartments covered with Velcro flaps (see Figure 18).  

The larger, more centered of the two contains two lithium polymer batteries (Procerus 

Technologies:  “UAV Test Platform,” 2006).  The other compartment holds the 

AeroComm AC4490-1000-M3 RF modem and the Kestrel Autopilot.  Conveniently, 

these two devices connect to each other, forming one compact package that fits nicely in 

the allowable space.  The Unicorn uses an imbedded dipole antenna to communicate with 

its ground station.            
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Figure 18.   Procerus Unicorn battery (middle) and autopilot (left of center) 

compartments (From:  Procerus Technologies:  “UAV Test Platform,” 2006) 
 
 

b. Intended Use and Specification Overview 
The Unicorn was designed for use as a test platform.  The performance, 

low-cost and durability of the Unicorn makes it an ideal UAV from which to test a 

variety of onboard equipment, such as environmental sensors, various autopilot systems, 

modem hardware, or any other experimental payload weighing less than 16 ounces.  The 

Unicorn’s range is highly dependent upon the modem hardware and configuration used, 

as communications range and battery life are limiting factors in this regard.  Equipped 

with the standard battery package and an AC4490-1000-M3 RF modem, the Unicorn has 

a range of “3 to 6 miles at an altitude of 400 feet” (Procerus Technologies:  “UAV Test 

Platform,” 2006).  It can reach speeds of 45 MPH, with total flight endurance of about 1 

to 1.5 hours (Procerus Technologies:  “UAV Test Platform,” 2006).     

2. Morphing Micro Air-Land Vehicle  

a. Intended Use 
Research into deployment and reconfiguration methodologies for WSNs 

provided a new dimension to the MMALV project.  WSNs are sometimes deployed in 

hostile environments, unsafe or unfit for entry.  These networks must be formed by nodes 

capable of both deploying and relocating themselves autonomously.  Outfitted with 

desirable WSN node hardware, the MMALV will eventually serve as a mobile WSN 

node (Boria, Bachmann, Ifju, Quinn, Vaidyanathan, Perry and Wagener, “A Sensor 

Platform Capable of Aerial and Terrestrial Locomotion”).  For example, MMALV nodes 

composing a WSN could enter an area of particular interest piggy-backed on a larger 
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UAV, drop off, and fly to a programmed location.  Spatial reconfiguration of the WSN 

would then be as simple as uploading different destinations to the MMALVs involved.     

b. Wing Structure and Design 
Many obstacles must be overcome to maintain flight control of “micro” 

UAVs, or more precisely, those falling within the Reynolds number range 104 and 106 

(Mueller, 1985).  In fact, the ratio of coefficient of lift to coefficient of drag drops by 

nearly two orders of magnitude through this range (Mueller, 1985).  Additionally, the 

velocity of Earth’s wind is comparable to the flight speed of micro UAVs, which can 

cause gross disparity between the forces bore by each wing.  “The small mass moments 

of inertia of these aircraft also adversely affect the stability and control characteristics of 

the vehicles” (Boria, Bachmann, Ifju, Quinn, Vaidyanathan, Perry and Wagener, “A 

Sensor Platform Capable of Aerial and Terrestrial Locomotion”). 

The inspiration for solving the many stability problems resulting from 

micro UAV size and weight was found through observation of naturally occurring flight 

mechanisms, specifically the wings of birds, insects, and bats.  Biological systems 

outperform small manmade aircraft in virtually every aspect of flight.  One of the 

mechanisms allowing them the requisite stability to perform these maneuvers is called 

passive adaptive washout.  The University of Florida designed the MAV with that in 

mind, giving it flexible bat-like wings (Ifju, Ettinger, Jenkins, Lian, Shyy and Waszak, 

2002).  Depending upon the airflow hitting each, MAV wings passively change shape.  

When a gust of wind hits a wing, the wing bends in the manner depicted by Figure 19, 

thus decreasing its lift efficiency.  However, since the air velocity over the opposite wing 

is higher, it continues to develop a nearly equivalent lifting force as the left wing (Ifju, 

Ettinger, Jenkins, Lian, Shyy and Waszak, 2002).  Both wings are capable of 

independently adapting to variations such as these, so flight becomes much more graceful 

and stabilized.  The wing structure employed by the MAV has been fully integrated into 

the MMALV design.     



30

 
Figure 19.   Demonstrating MAV wing flexibility (From:  provided by Ifju Lab, 

University of Florida) 
 

c. Terrestrial Locomotion 
Many biologically inspired modes of terrestrial locomotion were assessed 

at Case Western Reserve University during the search for a system to carry the MAV 

airframe.  The MMALV’s terrestrial locomotion solution was derived from the cockroach 

due to its ability to traverse over both large and small obstacles with relative ease.  While 

proceeding from one point to another with an unobstructed path, the cockroach walks 

with “adjacent legs 180 degrees out of phase” (Allen, Quinn, Bachmann and Ritzmann, 

2003).  It also exaggerates the height of each step with its front legs, “allowing it to take 

smaller obstacles in stride” (Allen, Quinn, Bachmann and Ritzmann, 2003).  When extra 

stability is required to overcome larger obstacles, the cockroach brings its adjacent legs 

into phase (Allen, Quinn, Bachmann and Ritzmann, 2003).   

Attached on either side of the MMALV’s front are cockroach inspired 

“Mini-WhegsTM (see Figure 20).  Mini-WhegTM robots can move “with a top speed of 10 

body lengths per second,” drop from significant heights without damage, navigate over 

large obstacles, and carry a payload weighing twice their body weight (Lambrecht, 

Horchler and Quinn, 2005).  Mini-WhegTM technology supplies the MMALV not only 

with the means to efficiently crawl to a new location, but with benefits ranging from 

improved landing survivability to the ability to negotiate some obstacles.  
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Figure 20.    The inspiration for the Mini-WhegTM design (From:  Boria, Bachmann, 

Ifju, Quinn, Vaidyanathan, Perry and Wagener, “A Sensor Platform Capable of 
Aerial and Terrestrial Locomotion”)  

 
d. Hardware Layout 
All of the MMALV’s onboard electronics reside in the same compartment.  

This compartment extends from the motor (situated behind the propeller), to the 

beginning of the tail fin, accounting for the entire body of the aircraft.  The craft’s dipole 

antenna, used to communicate with its base station, protrudes parallel to its rudder fin 

from the tail of the frame.       

E. KESTREL AUTOPILOT SYSTEM 

 The Kestrel Autopilot System is composed of four interrelated pieces:  the Kestrel 

Autopilot, Virtual Cockpit 2.1 (VC), the Virtual Cockpit Development Interface (VCDI), 

and the Procerus Commbox.  These components each contribute in some distinctive 

manner to the overall functionality of the UAV.       

1. Kestrel Autopilot 

The Kestrel Autopilot v2.2 is the controlling hardware and associated firmware 

installed in both the Unicorn and the MMALV that facilitates autonomous flight.  All of 

the hardware hosted on the UAV is tied together and processed at the autopilot.  With VC 

running at a ground station, users can interface with Kestrel Autopilot to receive 

navigational and telemetry data from a UAV, and can also update the UAV’s flight plan 

both prior to and during flight.  The Kestrel Autopilot can store flight plans consisting of 

up to 200 different waypoints (Procerus Technologies:  “UAV Test Platform,” 2006).  

Each UAV is assigned a unique ID number (which can be modified in VC), allowing 

users to operate multiple UAVs in the same area without control ambiguity.          
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Figure 21.   Kestrel Autopilot 2.2 (top) and AeroComm AC4490 RF Modem (bottom) 

(From:  Procerus Technologies:  “Kestrel Autopilot V2.22,” 2006) 
 
 

a. Kestrel Autopilot Hardware 
The modem used by the autopilot to communicate with the ground station 

attaches to the bottom of the autopilot forming a two tiered circuit board (see Figure 21).  

The Kestrel Autopilot weighs only 16.7 grams, and requires just 1.29 in3, making it the 

smallest and lightest device of its kind on the market (Procerus Technologies:  “Kestrel 

Autopilot V2.22,” 2006).  It sports a Rabbit Semiconductor microprocessor, which means 

it operates using an 8-bit 29 MHz processor with 512K of RAM, while drawing only 0.77 

Watts (Procerus Technologies:  “Kestrel Autopilot V2.22,” 2006).      

 
Table 1.   Kestrel Autopilot maximum ratings (From:  Procerus Technologies:  “Kestrel 

Autopilot V2.22,” 2006) 
 

The autopilot contains an Inertial Measurement Unit (IMU), allowing it to 

track its current position and motion vector in real time.  This data is computed through 

the utilization of 3-axis angular rate measurements for pitch, roll and yaw, and a 
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combination of GPS and 3-axis accelerometer measurements for bearing and speed 

(Procerus Technologies:  “Kestrel Autopilot V2.22,” 2006).  The bearing gyro is 

calibrated with data from a 2-axis magnetometer when the UAV is either at a stop or 

traveling at a slow speed relative to the ground (Procerus Technologies:  “Kestrel 

Autopilot V2.22,” 2006).  The IMU uses absolute and differential pressure sensors and 

GPS to obtain a measurement of its altitude.   

Three temperature sensors imbedded in the autopilot enable it to 

automatically adjust its sensors to temperature change.  This is important because 

temperature shifts can affect the accuracy of the IMU gyros as well as the autopilot’s 

pressure sensors.   

b. Peripheral Hardware Support 
Built into the autopilot is the capacity to power peripheral hardware 

devices at 3.3V and 5V, both at 500mA (Procerus Technologies:  “Kestrel Autopilot 

V2.22,” 2006).  It has four serial I/O ports to allow peripheral hardware devices to 

communicate amongst each other and to the autopilot itself.  One of which is designated 

solely for the use of GPS.  The standard serial interface of the I/O ports allows the Kestrel 

Autopilot to accommodate commercial off the shelf (COTS) GPS units (Procerus 

Technologies:  “Kestrel Autopilot V2.22,” 2006).  

(1)  Autopilot Servo Ports.  The autopilot has four servo ports, 

which facilitate the control of the UAV’s “moving parts.”  Servos use an electric motor to 

create a mechanical force that moves some piece of the UAV’s body (Wikipedia:  

“Servomechanism,” 2006).  The Unicorn and MMALV have different servo 

arrangements due to the dissimilarity of their steering mechanisms.   

(2)  MMALV Servo Port Usage.  The MMALV is controlled by an 

elevator and a rudder, accounting for two of its four servo ports.  The third servo port is 

occupied by the throttle control.  The MMALV currently requires two servo ports to 

operate its wegs.  Since there are only four servo ports in the Kestrel Autopilot, one of 

two modifications must be made.  It is possible to attach a servo extender board to the 

Kestrel Autopilot, giving it 8 additional ports.  Or in the absence of an extender board, 

one or more of the serial I/O ports can be reprogrammed to function as servo ports.             
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(3)  Unicorn Servo Port Usage.  The Unicorn is steered with a right 

and left aileron, which each require servo ports.  Like the MMALV, the throttle control 

occupies the third servo port.  The Unicorn does not use the available fourth servo port.     

 
Figure 22.   Kestrel Autopilot 2.2 block diagram (From:  Procerus Technologies:  

“Kestrel Autopilot V2.22,” 2006) 
 

c. Autopilot Altitude Approximation Skew 
The autopilot’s reliance on pressure readings to assess its altitude has lead 

to a problem that was not addressed by the manufacturer.  The autopilot must zero its 

sensors before flight to right its IMU and adjust its pressure sensors to the current reading 

at ground level.  Based on the pressure reading at ground level, the autopilot computes its 

altitude.  If the weather changes drastically during flight, the altitude that the autopilot 

associated with the ground level pressure will shift up or down depending upon the nature 

of the weather change.  GPS is not utilized to right the pressure—altitude association 

because it takes the Kestrel Autopilot approximately two minutes to compute the third 

dimension.   

2. Virtual Cockpit 2.1 

Although the Kestrel Autopilot does have the capacity to function autonomously, 

there are still many functions that require user input or guidance, including but not 

limited to real-time flight plan modifications, autonomous mode switching and collision 
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avoidance.  The user application supplying this interface is called Virtual Cockpit 2.1.  

VC is a Windows-based application developed by Procerus Technologies 

(http://www.procerusuav.com).  It allows users to “configure, monitor and issue 

commands to the autopilot and Commbox, upload flight plans, and change waypoints, all 

while UAVs are in the air” (Procerus Technologies:  “User Guide,” 2006).  It also 

presents all the telemetry, navigational and sensor data generated by the Kestrel Autopilot 

to the user through various display modules.   Figure 25 illustrates the VC user interface.  

VC supports four control alternatives.  The user can modify a UAV’s flight plan through 

the various buttons and interactive devices found within the VC graphical user interface 

(GUI), through the use of the Virtual Cockpit Development Interface to send crafted 

Kestrel packets through VC to the Kestrel Autopilot, by controlling the UAV from VC’s 

gamepad interface, or through the use of an RC controller.  The specific gamepad with 

which VC was designed to function is the Logitech Dual Action Gamepad (Procerus 

Technologies:  “User Guide,” 2006).   

There is an important distinction to be made between the gamepad and the RC 

controller that extends beyond their obvious physical differences.  The gamepad is used 

to supplement the various modes of autonomous control offered by VC.  On the other 

hand, once the RC controller is engaged, UAV behavior is dictated solely by the user.  

Users can seize control of the UAV with the RC control at any point during flight.  The 

RC controller supersedes all other control sources.                

 
Figure 23.   RC Controller toggling Manual Mode (From:  Procerus Technologies:  

“UAV Flight Guide,” 2006) 
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a. Virtual Cockpit 2.1 System Requirements 
According to the Kestrel Autopilot System User’s Guide, any computer 

upon which Virtual Cockpit 2.1 will run must have at a minimum the following 

specifications:   

- Microsoft Windows XP 

- 128 MB of RAM 

- 12 MB of hard drive space 

- Direct X 8 compatible video card with at least 8 MB video RAM 

- 700 MHz or faster CPU 

b. UAV Modes 
The mode buttons displayed in the upper left-hand corner of the Virtual 

Cockpit 2.1 GUI allow the user to select from eight varieties of autonomously controlled 

flight.  The specific mode governing a UAV’s flight can be changed at any time 

(Procerus Technologies:  “User Guide,” 2006).  Beginning with the leftmost option, 

selecting Home mode will cause the UAV to fly to the location where the positional 

sensors were zeroed before flight (generally the takeoff location).  Once above the 

intended location, the UAV will loiter in a circular holding pattern until a different mode 

is initiated.  Selecting Takeoff mode will cause the UAV to attempt an autonomous 

takeoff per the parameters displayed to the user in the lower right of the VC GUI (see 

Figure 25).  Similarly, entering into Land mode will cause the UAV to land in a manner 

dictated by the parameters displayed in the GUI, just below those directing autonomous 

takeoff.  Loiter Now mode causes the UAV to enter into a circular pattern around its 

current location, while Rally mode causes the UAV to loiter over a user defined 

“approach point.”  The approach point is the location from which the UAV begins an 

autonomous landing.  Although the gamepad can be used to control the UAV in any of 

the autonomous modes, Speed mode and Altitude mode were designed specifically to be 

used in conjunction with the gamepad.  When the UAV switches into Speed mode, the 

roll angle and cruise airspeed are maintained at predefined levels, allowing the user to 

concentrate on altitude adjustments.  This mode is helpful in assisting manual landings, 

since the throttle can be used to flair the vehicle before touchdown (Procerus 
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Technologies:  “User Guide,” 2006).  In Altitude mode the UAV will hold a predefined 

altitude and roll angle (Procerus Technologies:  “User Guide,” 2006), leaving the user to 

steer and adjust the speed.  This mode makes UAV piloting easier by controlling the most 

dangerous of the axes of movement.  The gamepad’s buttons take on unique meaning 

depending upon the selected mode, as detailed in Figure 24.  The eighth and final brand 

of autonomous flight supported by VC is called Navigation mode.  Navigation mode is 

fully autonomous, and so requires that the Kestrel Autopilot contain an uploaded flight 

plan.  A UAV engaged in this mode will complete the commands in its flight plan in the 

order by which they were uploaded.  These commands can be manipulated or replaced 

entirely in real-time.         

 
Figure 24.   UAV controls in Speed Mode (upper-left) and Altitude Mode (upper-

right) using Logitech Dual Action Gamepad (bottom image applies to both 
modes), (From:  Procerus Technologies:  “User Guide,” 2006) 
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c. Virtual Cockpit 2.1 Graphical User Interface 
The VC GUI contains several modules, each providing the user with a 

variety of control options, telemetry and sensor displays.  The Agent List just below the 

mode selection pane contains a row for every Kestrel Autopilot communicating with VC.  

By clicking on a UAV’s address, the user can quickly switch between active agents.  

Only the active UAV will receive RC control packets issued by the user.   

The heads-up-display (HUD), positioned under the agent list, displays the 

orientation of the active UAV.  This pane also contains status information such as the 

UAV’s airspeed, altitude, mode, battery voltage, and magnetometer heading.   

The remaining GUI panes on the left side of the VC display are the 

Message Window and the Preflight Tools.  The Message Window is designed to draw the 

user’s attention to “mission critical information” (Procerus Technologies:  “User Guide,” 

2006).  The Procerus Commbox, UAV, and VC itself are all potential topics for the alerts 

shown in this pane.  These messages are ordered and color coordinated based on their 

importance in the following manner:  red (most important), orange, yellow, and green 

(least important).  The Preflight Tools window has four buttons, each one initiating some 

aspect of the UAV’s preflight regimen.  The first of which is the Zero Pressure button.  

This button is depressed before flight while the UAV is grounded to align its sensors to 

ground pressure.  With this information, the UAV can calculate its altitude based on the 

difference between the ground pressure and pressures recorded during flight.  The GPS 

Home button causes the UAV to save its current GPS coordinates as its home location.  

This location should be set near the user because any severe in-flight problems will cause 

the UAV to fly home and loiter.  The Check Sensors button must be performed at ground 

level before takeoff.  It evaluates the sensor values returned by the Kestrel Autopilot to 

ensure they are “within allowable limits” (Procerus Technologies:  “User Guide,” 2006).  

The FS button opens separate window that allows the user to view and adjust the Kestrel 

Autopilot fail-safes.  The importance of this preflight check cannot be stressed enough.  

Appropriate fail-safes can prevent loss or destruction of a UAV in the event of GPS 

signal loss, loss of communications with the ground station, low battery, or other 

unforeseen situations.   
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The most conspicuous section of the VC GUI is the Geo-referenced Map 

display.  Users can add their own overhead map images, operational area photographs, or 

rely on the default grid image of the operational area.  Once a satisfactory image is in 

place, users must provide VC with the latitude and longitude of a specified pixel within 

the image.  The resolution of the display can be adjusted to the user’s liking.  When the 

Dwnld button is pressed, the UAV’s current flight plan is sent to VC via the Procerus 

Commbox.  This action populates the map image with an accurately scaled and 

positioned visual representation of the active UAV’s flight plan.  Users can modify any 

aspect of the flight plan by manipulating its visual representation.  Clicking on and 

dragging a waypoint will reposition its associated command destination.  Right-clicking 

on the map image allows users to add new commands to their flight plan, and commands 

can be deleted by selecting them and pressing the delete key.  The active UAV will not 

adhere to any modifications made to the flight plan until the Upld button is pressed.  This 

button directs VC to send an up-to-date flight plan to the active UAV’s Kestrel Autopilot 

via the Procerus Commbox.   

The flight plan is also displayed in numerical form in the Flight Plan pane.  

The Flight Plan pane supplements the Geo-referenced Map by presenting users with the 

same information and functionality in a different manner.  Any changes made to the 

flight plan in the Geo-referenced Map are represented in Flight Plan pane and vice versa.  

Again, the Upld button must be pressed for any changes to take effect. 

The only window not yet discussed is the Takeoff and Landing pane.  The 

values found here govern the behavior of the UAV when control is passed to either 

autonomous Takeoff mode or Land mode.  The user may modify these values at will.       
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Figure 25.   Virtual Cockpit 2.1 graphical user interface (From:  Procerus 
Technologies:  “User Guide,” 2006) 

 
3. Virtual Cockpit Development Interface 

The Virtual Cockpit Development Interface allows users to send packets through 

Virtual Cockpit 2.1 to the Kestrel Autopilot, and receive packets sent from the Kestrel 

Autopilot via Virtual Cockpit 2.1.  The VCDI is in essence a TCP/IP server that is started 

automatically when Virtual Cockpit 2.1 is opened.  The VCDI server listens on port 5005 

by default (Procerus Technologies:  “Kestrel Autopilot System,” 2006).  As the name 

implies, it is intended to serve as tool for developers to build upon the functionality of 

Virtual Cockpit 2.1.  User applications (clients) requiring a connection to the VCDI can 

use a loop-back IP address (127.0.0.0/8)  and the VCDI listening port to form the correct 

TCP server socket if both programs reside on the same operating system.  If not, user 

applications can utilize the VCDI over a local network or the Internet with a valid VCDI 

server socket.   
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The VCDI understands two different packet varieties:  Passthrough and Packet 

Forwarding Setup.  The structure of a VCDI packet begins with a general header, 

describing the packet type and size.  The type of a packet can be found in its first four 

bytes, in the form of a 32-bit integer.  This field allows the VCDI to distinguish between 

Passthrough and Packet Forwarding Setup packets.  The next four bytes contain another 

integer describing the number of bytes in the remainder of the packet.  The structure of 

the rest of the packet is dependent upon the value found in the type field.  

 
Table 2.   Virtual Cockpit Development Interface packet structure, bytes 0 to 8 (From:  

Procerus Technologies:  “Kestrel Autopilot System,” 2006) 
 

a. Passthrough Packets 
A Passthrough packet is identified by the number 10 in bytes 0 to 3 (the 

type field) of a VCDI packet.  Passthrough packets are sent from user applications to the 

Kestrel Autopilot via Virtual Cockpit 2.1, or from the Kestrel Autopilot to user 

applications via Virtual Cockpit 2.1.  Those traveling from a user application to a Kestrel 

Autopilot contain either commands or a command edit.  Passthrough packets heading in 

this direction contain a 16-bit integer starting at byte 8 that describes the destination 

address of the intended Kestrel Autopilot.  Passthrough packets traveling from a Kestrel 

Autopilot to a user application will contain either an acknowledgement packet or 

telemetry data.  These packets also have a 16-bit integer starting at byte 8, but in this case 

it describes the address of the sending Kestrel Autopilot.  The next field in a Passthrough 

packet, located within byte 10, describes the type of the Passthrough packet.  There are 

250 different packet types, but only five of them are of importance in the context of this 

thesis:  Command packets, Command Edit packets, Acknowledgement (ACK) packets, 

Negative Acknowledgement (NACK) packets, Telemetry packets and Navigation 

packets.        
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Table 3.   Passthrough packet structure, bytes 8 to 11 (From:  Procerus Technologies:  

“Kestrel Autopilot System,” 2006) 
 

(1)  Command Packets.  Byte 10, which describes the Kestrel 

packet type, contains the number 50 in every Command packet.  Command packets are 

crafted by user applications and sent to the Kestrel Autopilot to order the UAV to carry 

out some action.  The three command types that the VCDI supports are Jump, Loiter and 

Goto (Procerus Technologies:  “Kestrel Autopilot System,” 2006).  The three have the 

same packet structure to byte 13.  Byte 11 contains an unsigned character (1 byte) that 

distinguishes between the available commands.  Byte 12 contains an unsigned character 

representing the position of the command relative to the other commands in the UAV’s 

flight plan, and byte 13 describes the total number of commands in the flight plan.   

Jump Commands cause the Kestrel Autopilot to move to a 

different command in the UAV’s flight plan.  It allows user applications to change the 

command number that the Kestrel Autopilot is currently executing without modifying the 

flight plan itself.  For example, if a jump to command 1 was issued, the Kestrel Autopilot 

would move to and execute command 1, then proceed in order with commands 2, 3, etc, 

regardless of whether or not the commands had already been executed.  Jump Command 

Packets require only one byte of unique input.  Byte 14 in a Jump Command Packet 

describes the command number that the Kestrel Autopilot is instructed to move to and 

execute.    
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Byte 

Index 
Type Name Description Value 

0 INT VCDI Packet Type Indicates a Passthrough packet 10 

4 INT Packet Size 
Number of bytes from byte 8 to 

the end of the packet 
6 

8 UINT 
Destination/Source 

Address 

Contains the destination address 

of the intended Kestrel 

Autopilot 

1032 

(default)

10 UCHAR Kestrel Packet Type 
Specifies the Kestrel Packet 

type as Command Packet 
50 

11 UCHAR Command Type Indicates a Jump Command 8 

12 UCHAR Command Number 

Number describing the position 

of this command in the flight 

plan 

Varies 

13 UCHAR Total Commands 
Total number of commands in 

the current flight plan 
Varies 

14 UCHAR Command Number 
Command number to which the 

Kestrel Autopilot will jump 
Varies 

Table 4.   Complete Jump Command packet structure 
 

A Loiter Command causes the UAV to go to a designated latitude 

and longitude, and fly in a circle around the specified location.  The user can define many 

of the characteristics of this maneuver including the location of the loiter circle, the 

altitude of the loiter circle, the flight speed of the UAV to the loiter location, the amount 

of time the UAV should fly in a circle, and the radius of the loiter circle.  The last field in 

a Loiter Packet is referred to as the “Payload” byte.  This byte will be used in the future 

to indicate what sensors or instruments a particular UAV carries, so it is currently nothing 

more than a place-holder.  
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Byte 

Index 
Type Name Description Value 

0 INT VCDI Packet Type 
Indicates a Passthrough 

packet 
10 

4 INT Packet Size 

Number of bytes from 

byte 8 to the end of the 

packet 

21 

8 UINT 
Destination/Source 

Address 

Contains the destination 

address of the intended 

Kestrel Autopilot 

1032 

(default) 

10 UCHAR Kestrel Packet Type 

Specifies the Kestrel 

Packet type as 

Command Packet 

50 

11 UCHAR Command Type 
Indicates a Loiter 

Command 
4 

12 UCHAR Command Number 

Number describing the 

position of this 

command in the flight 

plan 

Varies 

13 UCHAR Total Commands 

Total number of 

commands in the 

current flight plan 

Varies 

14 UINT Altitude Altitude of loiter Meters*10 

16 UCHAR Airspeed 
Airspeed when flying to 

the loiter point 
(Meters/Second)*2

17 UINT Loiter Time Amount of time to loiter Seconds 

19 UINT Loiter Radius Radius of loiter circle Meters 
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21 FLOAT Degrees Latitude 
Degrees of latitude of 

loiter circle center 
Degrees 

25 FLOAT Degrees Longitude 
Degrees of longitude of 

loiter circle center 
Degrees 

29 UCHAR Payload For future use N/A 

Table 5.   Complete Loiter Command Packet structure 
 

A Goto Command causes the UAV to fly to a specified latitude 

and longitude at a designated speed and altitude.  This is the principal command used to 

get the UAV from one waypoint to the next.  Like the Loiter Command, the Goto 

Command Packet also carries a payload byte as its last field. 

Byte 

Index 
Type Name Description Value 

0 INT VCDI Packet Type 
Indicates a Passthrough 

packet 
10 

4 INT Packet Size 

Number of bytes from 

byte 8 to the end of the 

packet 

17 

8 UINT 
Destination/Source 

Address 

Contains the destination 

address of the intended 

Kestrel Autopilot 

1032 

(default) 

10 UCHAR Kestrel Packet Type 

Specifies the Kestrel 

Packet type as 

Command Packet 

50 

11 UCHAR Command Type 
Indicates a Goto 

Command 
2 

12 UCHAR Command Number 
Number describing the 

position of this 
Varies 
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command in the flight 

plan 

13 UCHAR Total Commands 

Total number of 

commands in the 

current flight plan 

Varies 

14 UINT Altitude Altitude of waypoint Meters*10 

16 UCHAR Airspeed 
Airspeed when flying to 

the waypoint 
(Meters/Second)*2

17 FLOAT Degrees Latitude 
Degrees of latitude of 

the waypoint 
Degrees 

21 FLOAT Degrees Longitude 
Degrees of longitude of 

the waypoint 
Degrees 

25 UCHAR Payload For future use N/A 

Table 6.    Complete Goto Command Packet structure 
 

   (2)  Command Edit Packets.  Command Edit Packets allow user 

applications to change a command previously uploaded into the flight plan of a Kestrel 

Autopilot.  The structure of these packets is the same as the original issuing command, 

except that byte 10 contains 53 to identify it as a Command Edit Packet.  The data found 

within the Command Edit Packet simply writes over the indicated command number.   

   (3)  ACK Packets.  Acknowledgement Packets are sent from the 

Kestrel Autopilot to the Virtual Cockpit 2.1 after the successful issuance of an 

instruction.    The Acknowledgement is sent upon the receipt of a legitimate packet; the 

Kestrel Autopilot does not wait until the instruction contained within the packet is carried 

out.  User applications can have Virtual Cockpit 2.1 forward ACK Packets to them 

through the VCDI. 

   (4)  NACK Packets.  Negative Acknowledgement Packets are sent 

from the Kestrel Autopilot to Virtual Cockpit 2.1 in the event that the autopilot received 

an invalid instruction.  This generally occurs when packet fields do not align with 
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specification or when fields contain a reference to a command that does not exist within 

the autopilot’s flight plan.  User applications can have Virtual Cockpit 2.1 forward 

NACK Packets to them through the VCDI. 

   (5)  Telemetry Packets.  Telemetry Packets flow from the Kestrel 

Autopilot to Virtual Cockpit and to any user application that has enabled packet 

forwarding through the VCDI for Kestrel Packet type 249.  These packets contain the 

UAV’s current altitude, velocity, roll, pitch, heading, turn rate, and a host of other metrics 

describing the UAV’s position, vector in three dimensions, and electrical system status.  

However, Telemetry Packets do not contain GPS data. 

   (6)  Navigation Packets.  Like Telemetry Packets, Navigation 

Packets are full of information describing the status of the UAV and are sent from the 

Kestrel Autopilot to Virtual Cockpit.  Any user application can request Navigation 

Packets from the VCDI by turning on packet forwarding for Kestrel Packet type 248.  

Unlike Telemetry Packets, almost every field in a Navigation Packet contains data that 

was computed using GPS.  For example, Navigation Packets include GPS latitude, GPS 

longitude, GPS altitude, GPS heading, and many other values concerning the position of 

the UAV and the strength of its GPS signal.  User programs requiring latitude and 

longitude values to function must tap this resource.                   

b. Packet Forwarding Setup Packets 
When packet forwarding is enabled for a specific packet type, the VCDI 

will send a copy of each packet of that type Virtual Cockpit 2.1 receives from the Kestrel 

Autopilot to the requesting user program.  A Packet Forwarding Setup Packet must first 

be sent from a user program to Virtual Cockpit 2.1 to start the forwarding service.  Bytes 

0 to 4 of a Packet Forwarding Setup Packet contain the integer 20.  These packets have 

two unique fields.  The Packet ID byte contains a value that identifies the Kestrel Packet 

type that a request concerns.  The following byte contains a 1 if packet forwarding is to 

be turned on and a 0 if it is to be stopped.             
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Table 7.   Packet Forwarding Setup Packet structure, bytes 8-9 (From:  Procerus 

Technologies:  “Kestrel Autopilot System,” 2006) 
 

 
Table 8.   Virtual Cockpit Development Interface packet types (From:  Procerus 

Technologies:  “Kestrel Autopilot System,” 2006) 
 

4. Ground Station 

Users can choose to control their UAV through Virtual Cockpit 2.1, an 

application utilizing the Virtual Cockpit Development Interface, or manually by remote 

control (RC).  Regardless of the method selected, a wired connection to the UAV is 

clearly out of the question.  Commands issued by the user must be sent from the ground 

to the Kestrel Autopilot over a wireless connection.       

Ground station is the term used to describe the hardware that hosts the user 

interface to a UAV autopilot.  In the case of the Kestrel Autopilot, this consists of either a 

laptop or desktop computer coupled with a Procerus Commbox, or optionally an RC—

Procerus Commbox combination.  Procerus Commboxes use the AeroComm AC4490-

1000-M3 radio frequency (RF) modem to communicate with the Kestrel Autopilot. 

 
Figure 26.   Connecting the ground station computer to a Procerus Commbox to form a 

Kestrel Autopilot System ground station (From:  Procerus Technologies:  “User 
Guide,” 2006)  
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The Commbox has three defined roles within the Kestrel Autopilot System.  It is 

responsible for providing the ground station computer (and relevant user applications) 

with GPS coordinates detailing the location of the ground station, handling 

communication between the ground station computer and one or more aircraft” (Procerus 

Technologies:  “User Guide,” 2006), and interpreting and sending RC commands to the 

Kestrel Autopilot.      

 
Figure 27.   Procerus Commbox ports and connections (From:  Procerus Technologies:  

“User Guide,” 2006) 
 

a. Ground Station to Autopilot Communication 
(1)  Modem Compatibility.  The Kestrel Autopilot has a 5-pin 

modem connection port capable of “supporting serial transistor-transistor logic (TTL) 

communication” (Procerus Technologies:  “Kestrel Autopilot System,” 2006).  Like the 

GPS serial I/O port, the Kestrel Autopilot’s modem connection port was designed to 

interface with COTS RF modems.  Procerus recommends using the AeroComm AC4490-

1000-M3 RF modem because the Kestrel Autopilot was designed to “piggy-back” on it 

(see Figure 21) through a pin compatible header connection (Procerus Technologies:  

“Kestrel Autopilot System,” 2006).  The header connection keeps the Kestrel Autopilot 

and AeroComm RF modem package together in one compact package.  While the RF 

modem utilized by the Kestrel Autopilot is changeable, the RF modem in the Procerus 

Commbox is not. These Commboxes come from Procerus with a preinstalled AeroComm 

RF modem.         

(2)  AeroComm AC4490-1000-M3 RF modem.  According to 

AeroComm’s specification document, the AC4490-1000-M3 RF modem operates at 

900MHZ and is “capable of up to 76.8 kbps communications at ranges of over 10 miles 

line-of-sight” (Procerus Technologies:  “Kestrel Autopilot System,” 2006).  It can operate 
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in one of two modes:  Broadcast or Polling.  In broadcast mode, the UAV will send a 

continuous stream of unprovoked telemetry packets to its ground station.  This mode can 

not be used if there is more than one UAV outfitted with the Kestrel Autopilot operating 

within 10 miles because the rapid telemetry packet transmissions from two UAVs in 

broadcast mode would cause too many transmission collisions to function properly.  In 

polling mode, the UAV waits to be queried for a telemetry packet by the ground station 

before transmitting telemetry data.  This mode of operation allows for more than one 

UAV outfitted with the Kestrel Autopilot to fly at a time, but telemetry values update 

with higher latency.        

b. Ground Station Computer System Requirements 
Ground station computers must connect to the Procerus Commbox 

through an RS-232 serial port.  Thus they themselves must have a serial port, or the 

proper conversion cables and drivers to support connectivity to a serial port.  Users 

issuing commands to the UAV through VC must utilize a ground station computer that 

also meets the system requirements necessitated by VC.   
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III. PATH CALCULATION AND PACKET TRANSLATION 
APPLICATION:  OVERVIEW, ARCHITECTURE AND 

IMPLEMENTATION 

A. INTRODUCTION 

The Path Calculation and Packet Translation Application version 1 (PCPTAv1) is 

part of an ongoing project at the Naval Postgraduate School which seeks to implement an 

autonomous UAV—WSN system designed for military and homeland security 

surveillance applications.  PCPTAv1 is the main contribution of this thesis.  In this 

chapter, PCPTAv1’s role within the system will be explained as we take an in-depth look 

into its organization and functionality.    

B. AUTONOMOUS UAV—WIRELESS SENSOR NETWORK SYSTEM 
OVERVIEW 
Confronted with an area of particular interest that is either too vast or dangerous 

to insert human assets, the UAV—WSN system can deploy to collect environmental 

sensor data and send it to a base station positioned in a safer locale.  Although it is not yet 

ready to serve in this capacity, the MMALV will eventually contain the hardware to 

function as a WSN node.  There are a number of modes being explored to deliver 

MMALVs to an area of operations due to its relatively short range, such as attaching 

several to a larger UAV or dropping them from balloons.  Once deployed in the desired 

layout, this adaptable, meshed WSN begins transmitting sensor data, relayed either by 

satellite or networking equipment onboard the delivery platform to a ground station miles 

away.  The data streaming back from the WSN is continually evaluated by OTAv1, 

measuring each sensor reading against environmental thresholds set during deployment.  

When a contact event is triggered by OTAv1, TRSSv3 activates sensor node cameras at 

the appropriate times, as determined by the velocity and directional outputs generated by 

OTAv1.  The system administrator can then assess whether or not the contact requires 

further examination based on the returned sensor readings and uploaded camera pictures.  

With a few modifications to OTAv1, which will be discussed at length in a later section, 

contact events will also trigger PCPTAv1 to ask the administrator whether or not to send 

a UAV to either the location of the activated sensor network or to an estimated 
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interception point with the contact.  This UAV could be the same aircraft functioning as a 

wireless relay point and perhaps the same vehicle used to deliver the network; or 

alternatively, serve only as an investigative tool, launching upon contact detection.  The 

sensory capabilities of this UAV would at a minimum entail streaming video, in addition 

to the various sensors required by the aircraft’s Kestrel Autopilot.   

In the case where further inspection is requested, PCPTAv1 assesses the UAV’s 

current position and calculates an optimized series of two dimensional waypoints, 

guiding the UAV to the selected destination.  PCPTAv1 packetizes these waypoints 

according to the VCDI specification and sends them over a TCP/IP connection to the 

Virtual Cockpit Development Interface where they are routed to the UAV’s Kestrel 

Autopilot via VC.  Once onsite, the UAV enters a loiter circle and transmits video of the 

area below.  VC can be used to correct the UAV’s position until an adequate visual angle 

of the contact is acquired.                         

C. WIRELESS SENSOR NETWORK CONTACT SCENARIOS 

As discussed briefly in the prior section, there are three options presented to the 

PCPTAv1 user upon contact detection.  The quality of the sensory data returned by the 

WSN will determine the accuracy of the initial contact classification.  If the network 

administrator is satisfied with the data upon which the classification was based as well as 

the classification itself, a UAV need not be sent to investigate the contact further.  Thus 

the option to take no further action is included in the PCPTAv1 GUI.        

1. Contact Interception  
Some WSN contacts will not emit distinctive sensory readings making 

classification difficult.  Others may not traverse through the network on an ideal heading 

to capture useful TRSSv3 images.  Still others may be of particular interest and 

necessitate a tag to monitor the contacts movements and actions.  In each of these cases, a 

UAV must be used to capture video of the contact.  The contact, however, will not 

remain motionless to wait for the UAV’s arrival.   

With the output returned by a slightly modified OTAv1, PCPTAv1 can 

extrapolate the WSN contact’s path and compute an optimal flight plan to guide a 

designated UAV on an intercept course.  This option is presented to the user in the 
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PCPTAv1 GUI upon contact detection.  Before sending a UAV, PCPTAv1 first evaluates 

whether the contact can be caught given the physical limitations of the UAV in question.                           

2. Operational Support  
When many contacts enter the WSN, each exhibiting a different trajectory, it 

becomes inefficient to associate a separate UAV with each contact.  Rather than follow a 

particular contact, situations such as this call for one or more UAVs to deploy in the 

vicinity of the sensor network to provide visual support for a potential engagement.  

PCPTAv1 incorporates the functionality to contend with this scenario, by offering the 

user the option to send a UAV to the center of the instigating WSN.                       

D. APPLICATION DEVELOPMENT 

1. Programming Language 
PCPTAv1 was written in C++ for two reasons.  The author’s familiarity with this 

language was certainly a strong motivation.  Also, Procerus Technologies wrote sample 

C++ code to illustrate how to use the VCDI.  With permission from Procerus, the author 

began developing PCPTAv1 from the framework supplied by this code.         

2. Development Software 
Microsoft Visual Studio 2005 Professional Edition was used to develop 

PCPTAv1.  It is recommended that any future compilations of this code be carried out 

using Microsoft Visual Studio as well, due to this code’s susceptibility to 

misinterpretation and reliance upon Microsoft Foundation Classes.  The number of bytes 

used to represent some of the variable types found in this code is not standard across 

different compilers.  The packets sent from PCPTAv1 depend on the standards within 

Microsoft Visual Studio to associate the expected number of bytes with each variable.  

Without compliance to this standard, any packets sent to the VCDI will be discarded and 

never reach the UAV.         

E. DESIGN CONSIDERATIONS AND ASSUMPTIONS 

1. Software/Hardware Dependencies 

a. Hardware Requirements 
The hardware requirements outlined in both the Virtual Cockpit 2.1 and 

Ground Station sections of Chapter II also apply to any system running PCPTAv1.  No 

UAV utilizing the Kestrel Autopilot System can fly autonomously without either VC or a 
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Procerus Commbox.  PCPTAv1 relies on VC to host the VCDI and relay its packets to 

the Kestrel Autopilot.  Without a Commbox, communications between user applications 

(including VC) and the UAV would not be possible. 

PCPTAv1 is intended to be only the first iteration in a series of such 

applications, and so developers will be interested in the hardware requirements necessary 

to compile the code.  Using Microsoft Visual Studio 2005 Professional Edition (as 

recommended) requires a system with at least the following (Microsoft Corporation, 

2006): 

- 1 GHz processor 

- 256 MB of RAM 

- 2 GB of available hard drive space 

- Microsoft Windows 2000 Professional Edition (or later)                

b. Software Dependencies 
  For any system to run PCPTAv1 in its current form, the following 

software is required: 

- Microsoft Windows XP 

- Microsoft Visual Studio 2005 Professional Edition 

- Virtual Cockpit 2.1 

2. Assumptions 

a. Autopilot Telemetry Accuracy 
PCPTAv1 depends on the accuracy of the telemetry and navigational 

packets sent from the Kestrel Autopilot to the ground station in all of its calculations.  

This is the application’s sole source of data as to the active UAV’s vector and orientation.  

The Kestrel Autopilot System has proven to be extremely reliable in this regard, and so it 

is assumed that such behavior will continue.         

b. Flight Plan Considerations  
The flight paths that PCPTAv1 creates are close to optimal in two 

dimensions.  Once uploaded to the Kestrel Autopilot, getting the UAV to the waypoints 

contained in each flight plan is not PCPTAv1’s responsibility.  This creates several 
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problems.  First, if the GPS used by Kestrel Autopilots for navigation is not differential, 

which happens to be quite expensive at this time, its GPS readings will only be accurate 

to a few meters.  While accuracy of this level is not necessarily essential in this 

application, it is important to note.   

Wind resistance is not considered in PCPTAv1 calculations.  Intercept 

flight plans depend on the precise execution of waypoints based on the maximum 

velocity of the UAV, which is inputted by the user.  Wind can have a large effect upon 

the path and velocity of micro-UAVs, and could grossly affect a UAV’s ability to reach 

an intercept location at the intended time.  In high winds, many micro-UAVs exhibit 

erratic behavior and are not capable of flying in a straight line, making the optimization 

efforts of PCPTAv1 worthless.                     

The flight plan generation algorithms in PCPTAv1 do not account for 

physical obstructions.  Kestrel Autopilot is outfitted with a barometer, and gauges its 

altitude by the difference between its current the pressure and a ground pressure reading.  

While it can adjust to slight inclines, a sharp, protruding mountain could spell disaster for 

the Kestrel Autopilot.  PCPTAv1 will happily slam the UAV into the side of a mountain 

or building that falls along the computed path to its destination.            

3. Operational Considerations 
The UAV—WSN system is being designed with deployment in mind.  Its COTS 

hardware components are easily obtainable and inexpensive.  The training required for 

administrators will be minimal since most of its operational challenges are abstracted 

from the user and handled autonomously.  Where the user must interact with the system, 

the user interface has been made as simple as possible.  Kestrel Autopilot controlled 

UAV platforms can be upgraded, modified and swapped while retaining the support 

provided by PCPTAv1 and VC.  The scalability of this solution is as easy as adding or 

removing UAVs and WSN clusters to an operational area.  With MMALV nodes, the 

mobility and meshed communications of this system’s WSN make it extremely adaptable 

to the characteristically unpredictable nature of most operational environments.        
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F. UAV—WSN SYSTEM COMPONENT APPLICATION INTEGRATION 

While TRSSv3 and OTAv1 were developed simultaneously with collaboration in 

mind, the same cannot be said for PCPTAv1.  PCPTA was produced the year following 

these applications.  Due to the author’s inability to weigh in on OTAv1 design objectives, 

some modifications must be made to this program before it can provide PCPTAv1 with 

the input it requires.      

OTAv1 is limited to one of three WSN deployment scenarios.  Each of these 

scenarios require sensor nodes be placed along a road or corridor.  In the absence of such 

a formation, OTAv1 will recognize a contact’s presence, but will not be able to measure 

its speed or assess its direction of travel.  Any system suffering these restrictions would 

not be viable for real-world use.  OTAv1 must be improved upon to include support for a 

nebulous, adaptable WSN layout.          

OTAv1 was designed specifically to interpret a Crossbow MBR410 Base Station 

serial data stream from a MSP410 Mote Security System.  It is unknown at this time what 

WSN hardware the UAV—WSN system will use; however, OTAv1’s use of the MSP410 

Mote Security System has had a significant impact upon the node data it expects and 

utilizes in its calculations.  OTAv1 had only IR sensors and magnetometer readings at its 

disposal.  Without mote GPS support (as is the case in the MSP410 package), OTAv1 is 

forced to assess contact direction of travel relative to the position of its sensor motes.  In 

the straight road scenario, for example, OTAv1 outputs whether a contact is moving left 

or right down the road.  It does not provide users with the contact’s bearing, which is an 

integral piece to any interception calculation.  The final version of OTA must be able to 

retrieve GPS data from MMALV WSN nodes, and use it to both track the location of 

WSN clusters and calculate contact bearing. 

TRSSv3 is not expected to provide any input directly to PCPTAv1.  It activates a 

camera to take pictures of a WSN contact at the right times.  These pictures are viewed 

by the user to assist in contact classification, and the quality of this data will weigh into 

the user’s UAV deployment scenario selection.  However, this application is certainly not 

in its final form, as most of the hardware will have to change to port TRSSv3 

functionality to the MMALV.  The MMALV is outfitted with a CMC-08P micro color 
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CMOS camera, and certainly could not carry the weight of the Creative WebCam used in 

the current TRSSv3 implementation.  Depending upon the size and weight of 

commercially available satellite transceivers, the pictures taken may have to be sent to the 

base station before they are uploaded to a web server, as opposed to the current 

implementation scheme where they are sent through a satellite connection to the Internet.    

G. PCPTAV1 GRAPHICAL USER INTERFACE  

The PCPTAv1 GUI is what the user sees while using this application.  It is the 

interface through which the user controls the program.  Figure 28 depicts the PCPTAv1 

GUI, and should be used as a reference through the following description.   

There are several distinct sections, each enclosed in a grouping box with a blue 

title.  The “Zero Pressure” section, along with its underlying code was created by 

Procerus Technologies.  The “Packet Forward Selection,” “Acknowledgements” and 

“Telem and Nav Info” sections were originally produced by Procerus Technologies, but 

were modified by the author, and The UAV-WSN System section is solely the work of 

the author.      
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Figure 28.   PCPTAv1 GUI 

 
1. Title Bar 
One of the first actions taken by PCPTAv1 upon execution is to create a TCP/IP 

connection with the VCDI.  The most common causes of connection failure are due either 

to the user not starting an instance of VC, or use of the wrong VCDI destination socket 

within PCPTAv1.  Regardless of the cause, the user must be made aware of such a failure 

since PCPTAv1 cannot send or receive packets from a Kestrel Autopilot without a 

connection to the VCDI.  The title bar is utilized to relay the status of this connection to 

the user.       

2. Zero Pressure Grouping 

 Before takeoff, the user must zero the Kestrel Autopilot’s pressure sensor to 

associate the correct barometer reading with ground level.  This can be done in VC by 
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depressing the Zero Pressure button in the preflight tools module (see Figure 25).  This 

button was included in PCPTAv1 to show future PCPTAv1 developers how to lift VC 

functionality off of its user interface.  PCPTAv1 can communicate with VCDI over a 

TCP/IP connection, so there is no guarantee (thanks to modern networking technology 

and the Internet) that users will have physical access to the VC instance hosting VCDI.  

This button is the beginnings of the conversion process that will eventually instill within 

PCPTA all the options the user requires to control the takeoff, flight and landing of a 

UAV.   

3. Packet Forward Selection Grouping 
On Broadcast mode (default) Kestrel Autopilot will flood VC with a rapid stream 

of acknowledgement, telemetry and navigational packets.  The Packet Forward Selection 

grouping offers the user three alternatives for controlling the flow of these packets from 

VC to PCPTAv1.  Selecting any one of these options causes a Packet Forwarding Setup 

packet (see Table 7) to be sent to VC.  The “Acknowledgements Only” radio button will 

cause VC to allow only packet receipt acknowledgements to flow from the active Kestrel 

Autopilot to PCPTAv1, while the “Acks + Standard Telemetry” radio button allows only 

packet receipt acknowledgements and telemetry packets.  The “All Packets” radio button 

lets all packets flow to PCPTA and is the default setting.   

The user’s selection in this grouping can affect the ability for other parts of the 

application to function.  The “All Packets” radio button must be selected for PCPTAv1 to 

receive the information it requires to address a WSN contact.  While either of the other 

two radio buttons is selected, PCPTAv1 does not receive Navigation packets from the 

Kestrel Autopilot.  Meaning the application will not possess the GPS coordinates 

describing the UAV’s current location.          

4. Standard Telemetry Information Grouping 

This section displays the active UAV’s orientation, airspeed, and location in real-

time.  The roll, pitch, heading, altitude, and airspeed are taken from Kestrel Autopilot 

Telemetry packets.  For these values to refresh, either “Acks + Standard Telemetry” or 

“All Packets” must be selected in the Packet Forward Selection grouping.  As stated 

above, the latitude and longitude values are taken from Kestrel Autopilot Navigation 
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packets.  For the longitude and latitude indicator to display an updated UAV position, 

“All Packets” must be selected in the Packet Forward Selection grouping.   

5. Acknowledgements Grouping 
The Acknowledgement window displays a rough description and the time of 

receipt for any packet received by PCPTAv1.  The user should expect to see command 

packet acknowledgements from the active Kestrel Autopilot, Telemetry packet indicators, 

and Navigation packet indicators appear here, depending upon the selected radio button 

in the Packet Forward Selection grouping.     

6. UAV-WSN System Grouping 
 This grouping contains the user inputs necessary for a UAV to participate in WSN 

operations.   and a start button that causes PCPTAv1 to search for WSN contact reports 

from OTAv1.  The “Change Active UAV” button takes the user supplied input in its 

corresponding edit box and uses this number as the new Kestrel Autopilot address in all 

of PCPTAv1’s operations, including the data displayed in the “Telem and Nav Info” 

grouping.  This allows the user to direct more than one UAV in the operational area if 

necessary.   

When the “IGNITION” button is pressed, PCPTAv1 searches for WSN contact 

reports from OTAv1.  If a contact report is found, PCPTAv1 will ask the user whether to 

send the active UAV after the contact, send the active UAV to the instigated WSN 

cluster, or take no action (see Figure 29).  Picking either the first or second option will 

call into play the other inputs in the “UAV-WSN System” grouping.  The “UAV Turn 

Radius,” “UAV Range” and UAV Max Speed” must be set before the “IGNITION” 

button is pressed.  They each describe a different UAV attribute, and can be used to scale 

the flight plans produced by PCPTAv1 to any platform utilizing the Kestrel Autopilot 

System.                   

 

Figure 29.   User options upon PCPTAv1 detection of a WSN contact report 
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H. PATH CALCULATION AND FLIGHT PLAN PRODUCTION 

The two primary goals of this thesis are to be able to construct two dimensional 

optimized UAV flight plans based on WSN output, and to build the functionality required 

send a flight plan to the Kestrel Autopilot via the VCDI.  This section describes the 

specifics of the latter.  Flight plans are calculated in PCPTAv1 by the PathPlanner class 

(see Appendix C).   

1. Calculation Inputs 

a. User GUI Inputs 
Since the user is free to install a Kestrel Autopilot within any flyable UAV 

chassis, its physical attributes must be modifiable.  The user is responsible for these 

inputs within the PCPTAv1 GUI.  These inputs were introduced in the previous section 

during discussion of the “UAV-WSN System Grouping.”  The UAV’s turn radius is 

required to tune flight plan turns to the active UAV.  A larger turn radius will produce 

flight plans with wider turns.  Users must be careful not to underestimate this input, as it 

will result in a highly inefficient flight plan.  The UAV’s range is used to ensure that a 

destination is not set outside of ground station transmission range or further than the 

battery life of the vehicle will allow.  The UAV is sent at its maximum speed to 

investigate WSN contacts, regardless of the scenario chosen.  If sent to the WSN, the 

UAV must be onsite as quickly as possible to ascertain the situation so an appropriate 

response to the contact can be mounted.  In interception scenarios the contact’s path is 

estimated, and the further this estimation is extrapolated, the less accurate this point will 

be.  Therefore, the interception point reachable by the UAV, if interception is possible, at 

its top speed will be the most accurate attainable.         

b. Kestrel Autopilot Telemetry and Navigational Inputs 
  On its default setting, the “All Packets” radio button is selected on the 

PCPTAv1 GUI.  This provides the application with a host of data detailing the position, 

orientation and velocity of the active UAV.  Of this data, the latitude and longitude is 

used in flight plan calculations as the starting point for any computed path.  The current 

heading of the UAV is also taken into consideration, as a turn may or may not be 

necessary to put the UAV on the correct heading to its destination.    
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c. WSN/OTAv1 Inputs  
From the WSN, or peripheral applications parsing the WSN output such as 

OTAv1, PCPTAv1 requires several pieces of information to formulate an appropriate 

UAV flight plan.  When a contact is detected, PCPTAv1 must receive the latitude and 

longitude of the triggered WSN cluster.  This data is used as either the starting point of 

the contact’s estimated path in intercept calculations or as the UAV’s final destination in 

operational support scenarios.  The bearing and velocity of the contact will only be 

utilized if the user chooses to send a UAV after the contact; however, PCPTAv1 poses 

the user with this decision after WSN output is received.  Therefore, this information 

must always be included.  In its current state, PCPTAv1 expects to find contact data in a 

text file named “contact.”  The existence of this file in PCPTAv1’s local directory is used 

to indicate a detection event.  Figure 30 displays the format in which this data should 

appear, where the first number is the contact’s heading (in degrees), the second is contact 

velocity (in meters/second), and the third and fourth numbers are the (degrees) latitude 

and (degrees) longitude respectively.  The text file is necessary because these inputs 

cannot at this time be gleaned from the output of OTAv1 or any commercially available 

WSN system.    

 
Figure 30.   WSN output in “contact.txt”   

 
2. Sensor Network Investigation Scenario Flight Plan Calculation 
This scenario is realized when PCPTAv1 detects a WSN contact report from 

OTAv1 and the user selects to send the active UAV to the WSN cluster that made the 

detection.  The final waypoint is set at the latitude and longitude of the instigated WSN 

cluster.  The first PathPlanner operation carried out is to measure the distance between 

the UAV’s current location and its destination using the haversine formula.  This 

equation was published by R. W. Sinnott in Sky and Telescope (1984).  Since this 
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formula is based on a spherical model, it does not account for the elliptical shape of the 

Earth, and may not be the most accurate formula to use in some cases.  It is, however, 

quite accurate (all navigational models have some error) over small distances, making it 

ideal for use with micro UAVs.  The haversine formula and its C++ implementation:    

 
Figure 31.   The haversine formula, where ø1 and ø2 are latitudes, λ1 and λ2 are 

longitudes, d is the distance between points 1 and 2, and R is the radius of the 
sphere upon which the points reside (From:  Wikipedia:  “Haversine Formula,” 

2006) 
 
 

 
 

Figure 32.   The haversine formula solved for d, where h denotes “haversin(d/R),” 
(From:  Wikipedia:  “Haversine Formula,” 2006)   

 

The measureDistance function in the PathPlanner class solves the rightmost side 

of the equation shown in Figure 32:  “dist=2*asin(sqrt(pow((sin((lat1-lat2)/2)),2.0) +  

cos(lat1)*cos(lat2)*(pow((sin((lon1-lon2)/2)),2.0))));” where input coordinates and 

output distance are in radians, and North and West coordinates are treated as positive. 

Before any further computations are completed, the range of the active UAV is 

compared to the distance between it and the instigated WSN cluster.  If the destination is 

reachable, its latitude, longitude, and distance from the active UAV’s current position are 

used to determine its bearing from the UAV.        

The initial bearing to the WSN cluster must be calculated to determine whether or 

not the UAV must turn, and if so, how hard.  Figure 33 depicts a pseudo code 

representation of this calculation, and is followed by the actual code used in PCPTAv1 

(Figure 34).   
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Figure 33.   Pseudo-code  representation of the bearing calculation from one known 
point to another  (From:  The Math Forum, 2001) 

 

Figure 34.   C++ code to find the bearing from one known point to another (After:  
Movable Type Scripts, 2006) 

 
3. Intercept Scenario Flight Plan Calculation 

 a. Setup 
As in the previous scenario, the distance between the active UAV and the 

WSN cluster reporting the contact is computed using the haversine function.  This will be 

used later in the computation.  Two arrays are designated to hold estimated contact 

position coordinates; one is used to hold latitudes and the other longitudes.  The size of 

these arrays is determined by the equation:  “(V*3600*2)/5,” where V is the contact 

velocity (m/s).  Memory is allotted to track the contact’s estimated path for two hours, in 

five meter increments.  Accuracy greater than 5 meters along an intercept path is 

irrelevant thanks to the vantage point of the UAV and the resultant ground coverage in its 

video image.   
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Since this model expects the contact to maintain a constant speed and 

direction from the time of detection, it will become highly inaccurate with the passage of 

time.  If the active UAV cannot intercept a contact within two hours, the application will 

not send it.  The chances of the contact remaining along the same path at the same speed 

for over two hours are extremely small in the absence of a long, straight road.   

b. Feasibility Check 
  Before jumping into an exhaustive search, a few checks are conducted to 

assess the feasibility of finding an appropriate interception point.  If the contact is moving 

away from the active UAV in x and y (with reference to Figure 35), and moving faster 

than the UAV’s maximum speed, the calculations will never return a reachable result 

based on these inputs.  The case where the contact is moving away in x and y (with 

reference to Figure 35) and is at the time of detection located outside the range of the 

UAV will also set the unreachable flag.  These checks do not account for every potential 

situation where the interception point is unreachable or nonexistent.  All other cases are 

handled during the estimated path polling operation.   

 

Figure 35.   Contact bearings relative to the UAV in the X and Y directions 
 

c. Estimated Path Polling 
The polling operation checks along the estimated contact path (every 5 

meters) for the closest interception point to the active UAV’s current position.  This is 

computed by tracking the time it would take the contact to reach each point along its 

path, and comparing it to the time it would take the active UAV to reach the same 

location.  The first point found, starting from the current location of the contact, that  
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would take the active UAV less time to get to than the contact becomes the initial 

destination.  Each point along the contact’s path is generated and checked, to avoid 

generating unexploited data.   

Path polling is not the most efficient way to solve the interception 

problem.  However, this implementation computes accurate results with an overhead that 

is easily handled by any modern system.  The inefficiency lies in the brute force method 

it uses to attain its result.  The most efficient solution would involve adding a nonlinear 

equation solver to the application libraries, and solving the system of nonlinear equations 

detailed in Chapter IV.  These equations are used to prove the accuracy of PathPlanner 

output.  PCPTAv1 does not currently include the requisite libraries to solve them, as 

program efficiency is outside the scope of this thesis.        

d. Initial Bearing and Destination to Contact Interception  
Using the center of the instigated WSN cluster as the starting location 

along the contact’s projected path, its bearing and a distance interval of 5 meters are used 

to generate new latitudes and longitudes in the manner detailed by Figure 36.  The time it 

would take the contact to reach the generated point along its path is assessed by tracking 

the time through each five meter increment.  Given the contact’s velocity V (m/s), this 

equation is “Seconds=5.0/V.” The distance is then measured between the generated point 

and the active UAV’s current location using the haversine formula.  The time it would 

take the UAV to travel this distance is found by this equation:  “distance/(UAV 

maximum speed),” where distance is in meters and the UAV’s maximum speed is in 

meters/second.  As mentioned previously, the time it would take the contact to reach the 

generated point along its path and the time required by the UAV to reach this destination 

are compared.  If the UAV can get to the generated location before the contact, its initial 

destination and bearing have been found.    

 

Figure 36.   This equation finds the point (lat2, lon2) that is a distance d (nm) from 
point (lat1, lon1) on the true course tc (radians), where coordinates are in radians 

and the “%” operator denotes modulus (After:  Williams, 2004)        
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e. Final Bearing and Destination to Contact Interception 
The time it will take the active UAV to turn toward the initial contact 

interception point have yet to be factored into the calculation.  To remedy this situation, 

PCPTAv1 runs the initial destination through the same functions it uses to optimize path 

construction.  A flag is set to stop these functions from writing waypoints based on the 

initial destination.  The pathDecide function is run with an input of 1, and returns a 1 if a 

turn is required and a 0 if not.  If a turn is required, the makeTurn function is called with 

an input of 1 to determine how much of a turn is required.  These functions are discussed 

at length in the following section.  Turns are assumed to be a perfect circle, and so the 

additional time required can be evaluated using the UAV’s maximum speed (m/s), the 

UAV’s turn radius (m), and a fraction describing the extent of the turn, where 1 translates 

to a full 360 degree turn:  “Seconds=((2*pi*turnRadius*2) /maxSpeed)*(Turn Fraction).”  

Based on the velocity of the contact, it can be determined how much further along its 

estimated path the interception point must be moved due to the turn.  The turn time is 

reinterpreted as a distance with the equation: “contact distance traveled=UAV turn 

time*contact speed,” with inputs of seconds and meters per second respectively.  The 

final interception point is then generated according to Figure 36.  This calculation 

concludes by checking to ensure the contact is still possible to intercept after factoring in 

the turn.               

4. Optimized Path Construction 
 Optimized UAV paths in two dimensions consist of circular turns with minimized 

radii and straight lines (see Figure 37).  This is the guiding principle upon which 

PCPTAv1 bases flight plan production.  Destination calculations are scenario dependent; 

however, scenarios rely on the same logic to guide the active UAV along a near optimal 

path from its current location and bearing to its final destination.  The pathDecide 

function oversees general flight path construction, the makeGotoBeforeTurn and 

makeTurn functions handle turns where applicable, and the makeGotoFlyStraight 

function guides flight to the final destination.  This function is the last called in every 

flight plan, sending the UAV into a circular loiter over its final destination to await 

further commands from the user.  These functions are all members of the PathPlanner 

class.   
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Figure 37.   Optimized flight path in two dimensions 
 

a. General Path Construction:  pathDecide Function 

With reference to Figure 38, there are four zones relative to the current 

heading of the active UAV.  Every destination falls within one.  The pathDecide function 

determines to which zone a given destination belongs and takes the appropriate action.  

Destinations requiring less than a five degree turn (the red area shown in Figure 38) are 

fed directly to the makeGotoFlyStraight function, which creates a flight plan consisting 

solely of the destination waypoint.  PathPlanner guidance is not necessary for 

destinations directly in front of the UAV.  Destinations falling outside a distance twice 

the turn radius of the active UAV, that are within 45 degrees on either side of the UAV’s 

current bearing (green area in Figure 38) are dealt with in the same manner.  The Kestrel 

Autopilot is quite capable of reaching any point requiring less than a 45 degree turn in an 

efficient manner, given plenty of time and space to turn.   
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Figure 38.   Destination zones relative to the active UAV (bearing 0 degrees).  The 
outer circle has a radius 4 times the turn radius of the UAV. 

 

Figure 39 shows how some destinations falling within a distance twice the 

turning radius of the UAV from its current position are unreachable.  For this reason, 

destinations falling within the blue area in Figure 38 are handled first by the 

makeGotoBeforeTurn function followed by the makeTurn function.  The latter creates a 

waypoint directly in front of the active UAV at a distance of four times its turn radius, 

ensuring that the subsequent turn will be able to reach any destination within the blue 

area surrounding the UAV’s original position (in Figure 38).   

 
Figure 39.   Turning from its current position, the green area represents UAV 

reachable space.  The outer circle has a diameter equal to 4 times the UAV’s turn 
radius.     
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The remaining zone (yellow area in Figure 38) includes all destinations 

outside a distance twice the active UAV’s turn radius and requiring greater than a 45 

degree turn.  These are handled with a call directly to the makeTurn function since any 

point within this zone is reachable with a turn from the UAV’s current position (see 

Figure 39).   

b. Turn Optimization:  makeTurn Function   

When a turn is deemed necessary within PCPTAv1, the makeTurn 

function is called.  This function first decides upon the direction of the turn.  Any 

destination bearing between 180 and 315 degrees relative to the UAV’s current heading 

results in a left turn, while destinations bearing from 46 to 180 degrees (inclusive) result 

in a right.  The forward-looking 90 degree sector is left out of this decision because 

makeTurn is not called for turns of less than 45 degrees.  Eight points are then generated 

to represent the turning circle.  Traveling around the circle, the UAV must make 45 

degree turns to get to each successive point.  A check is performed at each point to 

determine the most efficient “break-off” location.  The break-off point is where the UAV 

stops turning and proceeds straight to the destination.  The criterion for selecting the 

break-off location is based upon whether turning toward the next point around the circle 

would bring the final destination to bear.  In the case of a right turn (see Figure 42), the 

break-off point is found if the destination falls within a range of 0 to 45 degrees relative 

to the UAV’s heading around the circle.  The opposite is true for left turns, where this 

range becomes 0 to 315 degrees relative.  

Turning circles must be represented by a series of points due to the 

limitations of the Kestrel Autopilot System.  The Kestrel Autopilot does not support 

commands entailing a specific turn rate.  In other words, one cannot craft a packet 

instructing the UAV to fly at a given bearing drift over a specific distance.  The Loiter 

Command is the only option offered within the Kestrel Autopilot System for flying the 

UAV in an autonomously controlled circle.  The loiter is controlled by a time input, 

which could translate to various distances around the circle depending upon the effects of 

wind.  Therefore this command cannot be relied upon to execute optimal UAV turns.   

 



71

 
Figure 40.   PCPTAv1 turning implementation 

 

The turning calculation can be made more accurate by constructing a 

circle with more than 8 points.  Greater granularity within the model would enable a 

break-off point to be chosen that is closer to the optimal location:  where the tangent line 

from the turn circle intersects the destination point (see Figure 41).        

 

 
Figure 41.   Optimal turns are ended at the first point where the tangent line of the turn 

circle intersects the destination.  
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5. Output 
The PathPlanner class writes waypoints to a text file called “dat.txt.”  The flight 

plan can then be utilized by the DevDemoDlg class to construct and send command 

packets to the Kestrel Autopilot.  The flight plan is passed through a text file to promote 

modularity within PCPTAv1’s development; specifically between the flight plan 

calculation and packetization processes.  This makes it easier to troubleshoot compilation 

or logical issues and the code simpler to read.  Additionally, the constructed flight plan 

can be viewed by the user without the aid of VC.   

Figure 42 displays a typical flight plan produced by the PathPlanner class.  Each 

line contains the data to construct one packetized command, and the type of the command 

is dictated by the first number.  The following numbers are command specific values, and 

are covered at length in the Background (Chapter II) and Appendix A.       

Developers must be careful when manually modifying the “dat.txt” file to adhere 

to the Kestrel Autopilot System specification.  Many values must be multiplied by a 

specific constant before submitted to the Kestrel Autopilot.  For example, the Kestrel 

Autopilot System manual lists the units of the altitude value in each command packet as 

“Meters * 10.”  To send the UAV to an altitude of 100 meters, an unsigned integer with a 

value of 1000 must be placed in the packet.                

 
Figure 42.   PCPTAv1 flight plan output.  The first three lines are Goto commands, 

while the fourth is a loiter command (as indicated by the first number on each 
line).     

 
I. VIRTUAL COCKPIT DEVELOPMENT INTERFACE PACKET 

CRAFTING 
Once a flight plan has been created, it must be packetized according to the VCDI 

specification.  This specification is covered at length in both the Background chapter and 
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Appendix A.  The flight plan at this point resides in a text file (see Figure 42) named 

“dat,” and each line within this text file contains the data for one packet.  The values in 

each line must be properly cast and sent to the VCDI socket in a specific order.     

Packets are constructed within PCPTAv1 using unique “struct” data structures to 

hold each packet type.  The lines within “dat.txt” are read one at a time in the 

OnBnClickedPumpData function.  As they are read, each line is passed to the sendPacket 

function to be parsed, formatted and sent to the VCDI. 

1. GoTo Command Packet Crafting Example 
To ensure clarity, we will step through the packetization of a GoTo command.  

Table 6 provides a byte by byte breakdown of a GoTo command packet.  The 

GoToPacket struct, which can be viewed in Appendix C, is used to store each value in the 

order they are to appear in the packet so that its contents can be copied in one operation.  

This order is determined by the variable listing sequence in the struct definition.  Struct 

definitions can be found in DevDemoDlg.h (see Appendix C).  The first value filled 

within the GoToPacket struct is the packet destination, which is taken from GUI input 

(UAV-WSN System grouping).  Next, the packet type is always 50 for GoTo packets 

since they are commands.  The command type is also hard-coded because it identifies the 

packet as a GoTo command.  The command type will always be 2 in GoTo packets.  The 

next two struct values contain the current command number and total number of 

commands in a flight plan.  Each time the sendPacket function is called from 

OnBnClickedPumpData, the variable keeping track of the current command number is 

incremented.  Before sendPacket is entered, countCommands is called in 

OnBnClickedPumpData.  This function counts the number of total packets, and hence, 

the number of commands that are in the flight plan.  The remaining struct variables are 

command specific.  For GoTo packets, these are altitude, airspeed, latitude, longitude and 

payload.   These values are taken directly from the flight plan text file.  The GoToPacket 

struct is then copied into an unsigned character array within an sVCPacket struct.  The 

sVCPacket contains two variables of its own that precede the aforementioned array.  

Think of the GoToPacket struct as the packet payload and the sVCPacket as its header.  

The first is the VC packet type, which is always 10 for Passthrough packets.  The next 
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variable, data size, contains the number of bytes copied from the GoToPacket struct.  The 

sVCPacket is then sent to the VCDI socket by the SendData function.      

2. Viewing PCPTAv1 Flight Plans on a Geo-Referenced Map  
  Once received by the active Kestrel Autopilot, the user can view uploaded 

waypoints using the geo-referenced map pane in the VC GUI, as seen in Figure 43.  

Before the map can be populated, the “download” button must be pressed to pass the 

current flight plan from the Kestrel Autopilot to VC.    

 

Figure 43.   PCPTAv1 flight plan displayed on the VC Geo-referenced Map 
 

 

 

 

 



75

IV. TESTING AND RESULTS  

A. TESTING/EXPERIMENTATION OVERVIEW 

PCPTAv1 must be shown to exhibit the functionality dictated in the previous 

chapter through rigorous experimentation.  The goals set during the development of this 

project were to enable communications between a user level application and a Kestrel 

Autopilot, and to create optimal flight plans in two dimensions based on WSN output.  A 

two phased testing approach was used to address these goals.   

Phase I presents the reader with evidence supporting PCPTAv1’s ability to 

properly craft Kestrel Autopilot packets and communicate flight plans to the active UAV.  

While investigating communications, the flight plan produced in each test case is 

assessed for adherence to the two-dimensional flight optimization scheme detailed in 

Chapter III.  Phase I test cases each involve a WSN investigation scenario, where the 

active UAV is sent to the WSN cluster reporting the contact.  Excluding final destination 

calculations, the same functions are called to construct flight plans regardless of the 

selected scenario.  WSN investigation scenario flight plans are easier to assess for 

correctness because the final destination is included in the (user controlled) WSN output, 

whereas, contact interception scenarios require final destination calculation, which 

introduces another layer of complexity.    

Phase II of the experimentation focuses solely on proving contact interception 

point calculation accuracy.  In each test case, the contact interception scenario is selected.  

Initial bearing and time to interception are computed by solving a system of non-linear 

equations and compared to the values produced in PCPTAv1.  These are used to generate 

intercept locations and a distance in meters between PCPTAv1’s estimated interception 

point and the correct location.      

B. TESTBED  

All experimentation was completed on the Naval Postgraduate School campus 

using the Procerus Unicorn UAV.  The Unicorn was outfitted with a Kestrel Autopilot, 

Furuno GH-81D GPS unit, and an AeroComm AC4490-1000-M3 RF modem.  A Dell 

Latitude (110L) laptop computer attached to a Procerus Commbox formed the base 
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station, and both VC and PCPTAv1 (compiled using Microsoft Visual Studio 2005 

Professional Edition) were run at the base station computer.  Contact data was 

manipulated by changing (manually) the contents of “contact.txt” to represent the proper 

WSN output for each case.        

C. PHASE I:  KESTREL AUTOPILOT PACKET TRANSLATION AND 
OPTIMIZED FLIGHT PLAN TESTING 

1. PCPTAv1/Kestrel Autopilot Communications Testing 

To establish communications between PCPTAv1 and a Kestrel Autopilot, 

properly constructed Packet Forwarding Setup packets must be sent to VC, and command 

packets crafted within PCPTAv1 must adhere to the Kestrel Autopilot System 

specification.  Each Phase I test case is run using the input specified in Table 9.  The 

flight path output produced by the PathPlanner class will be placed in a text file named 

“dat.txt” to serve as the input to the packet crafting function (sendPacket).  This output is 

compared to the waypoints viewed in VC after the “download” button is pressed to 

retrieve the active Kestrel Autopilot’s updated flight plan.  If they are the same in every 

test case, one may reasonably assume that the communications functionality within 

PCPTAv1 is correct.              

2. Optimized Flight Plan Testing 

Flight paths are optimized in two dimensions by entering the UAV into a turn 

circle with minimized turn radius until it is headed toward its destination.  Then the UAV 

must fly straight to its destination.  PCPTAv1 implements this idea by sending the active 

UAV on a series of 45 degree turns around a circle with radius equal to the UAV’s 

minimum turn radius.  At most, eight waypoints are used to represent a turn.  The UAV 

breaks off of its turn circle when the destination’s bearing falls within 45 degrees of the 

UAV’s current heading.  If the destination is within a distance twice the turn radius of the 

active UAV and not within 5 degrees of the UAV’s current heading, the UAV is sent 

forward a distance four times its turn radius before the turn is started.   

a. Test Case Orientation 
Test case destination points were chosen to elicit a specific response from 

PCPTAv1.    Four sets of cases were fashioned, each containing eleven individual tests.  

The first set is laid out as seen in Figure 44.  The second set has the same orientation, but 



77

with a 90 degree phase shift in the positive direction, making the UAV’s heading 135 

degrees true.  The third and fourth sets apply a 180 and 270 degree phase shift 

respectively.  With reference to Figure 44, cases 2, 4, 5 and 6 should produce flight plans 

commanding the UAV to fly straight to the destination.  Destinations 2 and 5 are directly 

in front of the UAV, while 4 and 6 require less than a 45 degree turn and are far enough 

away to allow the Kestrel Autopilot to guide the UAV on a relatively straight path to its 

destination.  Cases 1, 3, 7 and 8 were designed to cause flight plan output sending the 

UAV forward a distance four times its turn radius, then into a turn and back to its 

destination.  The UAV should make a right turn in cases 3 and 8, and a left in 1 and 7.  

This behavior is instigated by the proximity of these points.  They are within a distance 

twice the turn radius of the UAV from its current position, and would require more than a 

5 degree turn in either direction.  The flight plans produced in cases 9 and 10 should 

result in an instantaneous turn left and right respectively, followed by straight flight to the 

destination.  These destinations are behind the UAV’s current position and are far enough 

away to break into an immediate turn.  Case 11 was designed to test PCPTAv1’s ability 

to recognize whether or not a destination is out of range, and should result in a message 

telling the user that the active UAV is unable to reach the WSN cluster.  These responses 

should hold true for each case set.   
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Figure 44.   Phase I Test Case Layout (UAV bearing 45 degrees true) 
 

b. Testing Method 
In each of the 44 tests, expected behavior of each case is assessed and 

compared to PCPTAv1’s flight plan output.  Test cases were designed with a specific 

output in mind; therefore, it is relatively easy to spot successes and failures.  The pattern 

formed by the waypoints in each flight plan is more important than specific distances and 

measurements since all of the functions utilized to measure distance and produce new 

coordinates based on current position and bearing are also used to calculate intercept 

scenario final destinations.  Phase II will test this aspect thoroughly.  As all inputs and 

outputs are provided below, these optimized flight plan tests are highly repeatable.   

Test case input is broken down into four sets of 11 tests.  Test case 

numbers correspond to Figure 44, while set numbers define the phase shift applied to the 

diagram.  The following table describes the testing inputs used: 
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Set/ 

Test 

Case 

UAV Position

UAV Initial 

Bearing 
True North=0.0 
True East=90.0 

(degrees) 

UAV Turn

Radius 
(m) 

WSN Cluster 

Location 

1 1 
36.59560 

-121.87613 
45.0 50 

36.595810 

-121.87602 

1 2 
36.59560 

-121.87613 
45.0 50 

36.595757 

-121.87593 

1 3 
36.59560 

-121.87613 
45.0 50 

36.595688 

-121.87588 

1 4 
36.59560 

-121.87613 
45.0 50 

36.599773 

-121.87403 

1 5 
36.59560 

-121.87613 
45.0 50 

36.598782 

-121.87217 

1 6 
36.59560 

-121.87613 
45.0 50 

36.597355 

-121.87097 

1 7 
36.59560 

-121.87613 
45.0 50 

36.595600 

-121.87642 

1 8 
36.59560 

-121.87613 
45.0 50 

36.595516 

-121.87588 

1 9 
36.59560 

-121.87613 
45.0 50 

36.595600 

-121.88174 

1 10 
36.59560 

-121.87613 
45.0 50 

36.591099 

-121.87614 

1 11 
36.59560 

-121.87613 
45.0 50 

36.524857 

-121.96412 

2 1 
36.59968 

-121.87660 
135.0 50 

36.599598 

-121.87634 

2 2 
36.59968 

-121.87660 
135.0 50 

36.599525 

-121.87640 

2 3 
36.59968 

-121.87660 
135.0 50 36.599472 

-121.87649 

2 4 
36.59968 

-121.87660 
135.0 50 

36.598000 

-121.87141 

2 5 
36.59968 

-121.87660 
135.0 50 

36.596500 

-121.87263 
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2 6 
36.59968 

-121.87660 
135.0 50 

36.595539 

-121.87441 

2 7 
36.59968 

-121.87660 
135.0 50 

36.599911 

-121.87659 

2 8 
36.59968 

-121.87660 
135.0 50 

36.599472 

-121.87671 

2 9 
36.59968 

-121.87660 
135.0 50 36.604183 

-121.87659 

2 10 
36.59968 

-121.87660 
135.0 50 

36.599682 

-121.88220 

2 11 
36.59968 

-121.87660 
135.0 50 

36.528942 

-121.78860 

3 1 
36.60078 

-121.88184 
225.0 50 

36.600574 

-121.88195 

3 2 
36.60078 

-121.88184 
225.0 50 

36.600624 

-121.88205 

3 3 
36.60078 

-121.88184 
225.0 50 

36.600693 

-121.88210 

3 4 
36.60078 

-121.88184 
225.0 50 

36.596607 

-121.88395 

3 5 
36.60078 

-121.88184 
225.0 50 36.597599 

-121.88580 

3 6 
36.60078 

-121.88184 
225.0 50 

36.599022 

-121.88701 

3 7 
36.60078 

-121.88184 
225.0 50 

36.600780 

-121.88155 

3 8 
36.60078 

-121.88184 
225.0 50 36.600868 

-121.88210 

3 9 
36.60078 

-121.88184 
225.0 50 

36.600780 

-121.87624 

3 10 
36.60078 

-121.88184 
225.0 50 36.605282 

-121.88184 

3 11 
36.60078 

-121.88184 
225.0 50 

36.671455 

-121.79368 

4 1 
36.60214 

-121.87402 
315.0 50 

36.602222 

-121.87429 
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4 2 
36.60214 

-121.87402 
315.0 50 

36.602295 

-121.87424 

4 3 
36.60214 

-121.87402 
315.0 50 

36.602345 

-121.87414 

4 4 
36.60214 

-121.87402 
315.0 50 

36.603821 

-121.87922 

4 5 
36.60214 

-121.87402 
315.0 50 

36.605320 

-121.87799 

4 6 
36.60214 

-121.87402 
315.0 50 

36.606281 

-121.87621 

4 7 
36.60214 

-121.87402 
315.0 50 

36.601910 

-121.87403 

4 8 
36.60214 

-121.87402 
315.0 50 

36.602295 

-121.87383 

4 9 
36.60214 

-121.87402 
315.0 50 

36.597637 

-121.87403 

4 10 
36.60214 

-121.87402 
315.0 50 

36.602139 

-121.86843 

4 11 
36.60214 

-121.87402 
315.0 50 

36.672817 

-121.96220 
Table 9.   Phase I Test Inputs 

 
 

3. Phase I Results and Analysis 

The results of Phase I testing can be viewed in Table 10.  Test cases that both 

adhere to the two-dimensional optimized flight scheme described in the previous chapter, 

and are received and understood by the active Kestrel Autopilot are deemed successes.  

Those failing on either aspect of the test are considered failures.   

a. PCPTAv1 Computed Flight Plan Output Format  
 PCPTAv1 output was copied and pasted from “dat.txt” upon each 

execution.  The data is in a format understood by the Kestrel Autopilot, and therefore 

requires some explanation.  The first number on each row describes the type of command 

being sent.  PCPTAv1 uses only Goto (2) and Loiter (4) command packets to construct 

flight plans.  Goto commands are used to turn the active UAV onto a heading equal to the 

destination bearing, while Loiter commands are issued to send the UAV to its final 
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destination.  The last command in every flight plan will always be a loiter.  The second 

number in each PCPTAv1 flight plan output line describes the altitude at which UAV is 

instructed to fly.  The third details its speed.  A constant multiplier is applied to both 

units, per the Kestrel Autopilot System specification.  Altitude units are “meters * 10,” 

while velocity units are “2 * meters/second.”  Goto command lines follow with the 

latitude and longitude (degrees) of the waypoint, and finish with a payload value (0).  

Loiter commands proceed somewhat differently, as they require additional information.  

Following the velocity value is the length of time (seconds) the UAV should remain in a 

circular holding pattern at the indicated waypoint.  A zero in this location tells the UAV 

to remain onsite for as long as possible (until power resources are nearly depleted).  The 

next number details the loiter circle radius (meters), which is derived from the UAV turn 

radius inputted by the user.  Loiter commands finish in the same manner as Goto lines, 

with waypoint coordinates and an empty payload value. 

b. VC Flight Plan Output Format  
Flight plans were viewed in VC upon each test case execution.  The 

observed flight plans are formatted in Table 10 in a very similar fashion to the PCPTAv1 

output in the opposing column.  Loiter command lines are identified with an “L,” while 

Goto commands are begun with a “G.”  The VC display factors out the multipliers 

applied to various command values, however, the data is ordered in the same manner.  

VC rounds longitudes and latitudes within its display to a precision of five decimal 

places, which explains the truncation of the observed values.  Additionally, the payload is 

not displayed within the VC GUI. 

Set/ 

Test 

Case 

PCPTAv1 Computed Flight Plan Flight Plan Viewed in VC Success

1 1 

2 1200 30 36.59687042 -121.8745499 0 
2 1200 30 36.59704208 -121.8745499 0 
2 1200 30 36.59716415 -121.8747025 0 
2 1200 30 36.59716415 -121.8749161 0 
2 1200 30 36.59704208 -121.8750687 0 
2 1200 30 36.59642792 -121.8755493 0 
4 1200 30 0 50 36.59580994 -121.8760223 0 

G 120 15 36.59687 -121.87455  
G 120 15 36.59704 -121.87455  
G 120 15 36.59716 -121.87470  
G 120 15 36.59716 -121.87492  
G 120 15 36.59704 -121.87507  
G 120 15 36.59643 -121.87555  
L 120 15 0 50 36.59581 -121.87602 

Yes 

1 2 4 1200 30 0 50 36.59575653 -121.8759308 0 L 120 15 0 50 36.59576 -121.87593  Yes 

1 3 
2 1200 30 36.59687042 -121.8745499 0 
2 1200 30 36.59687042 -121.8743286 0 

G 120 15 36.59687 -121.87455  
G 120 15 36.59687 -121.87433  Yes 



83

2 1200 30 36.59674835 -121.8741837 0 
2 1200 30 36.59657669 -121.8741837 0 
2 1200 30 36.59645462 -121.8743286 0 
2 1200 30 36.59607315 -121.8751068 0 

4 1200 30 0 50 36.59568787 -121.8758774 0 

G 120 15 36.59675 -121.87418  
G 120 15 36.59658 -121.87418  
G 120 15 36.59645 -121.87433  
G 120 15 36.59607 -121.87511  

L 120 15 0 50 36.59569 -121.87588 

1 4 4 1200 30 0 50 36.59977341 -121.8740311 0 L 120 15 0 50 36.59977 -121.87403  Yes 

1 5 4 1200 30 0 50 36.59878159 -121.8721695 0 L 120 15 0 50 36.59878 -121.87217  Yes 

1 6 4 1200 30 0 50 36.59735489 -121.8709717 0 L 120 15 0 50 36.59735 -121.87097  Yes 

1 7 

2 1200 30 36.59687042 -121.8745499 0 
2 1200 30 36.59704208 -121.8745499 0 
2 1200 30 36.59716415 -121.8747025 0 
2 1200 30 36.59716415 -121.8749161 0 
2 1200 30 36.59704208 -121.8750687 0 
2 1200 30 36.59631729 -121.8757477 0 
4 1200 30 0 50 36.59560013 -121.8764191 0 

G 120 15 36.59687 -121.87455 
G 120 15 36.59704 -121.87455 
G 120 15 36.59716 -121.87470 
G 120 15 36.59716 -121.87492 
G 120 15 36.59704 -121.87507 
G 120 15 36.59632 -121.87575 
L 120 15 0 50 36.59560 -121.87642  

Yes 

1 8 

2 1200 30 36.59687042 -121.8745499 0 
2 1200 30 36.59687042 -121.8743286 0 
2 1200 30 36.59674835 -121.8741837 0 
2 1200 30 36.59657669 -121.8741837 0 
2 1200 30 36.59645462 -121.8743286 0 
2 1200 30 36.59598541 -121.8751068 0 
4 1200 30 0 50 36.5955162 -121.8758774 0 

G 120 15 36.59687 -121.87455  
G 120 15 36.59687 -121.87433  
G 120 15 36.59675 -121.87418  
G 120 15 36.59658 -121.87418  
G 120 15 36.59645 -121.87433  
G 120 15 36.59599 -121.87511  
L 120 15 0 50 36.5955 -121.87588  

Yes 

1 9 

2 1200 30 36.59577179 -121.8761368 0 
2 1200 30 36.59589386 -121.8762817 0 
2 1200 30 36.59589386 -121.876503 0 
2 1200 30 36.5957489 -121.8791275 0 
4 1200 30 0 50 36.59560013 -121.8817368 0 

G 120 15 36.59577 -121.87614  
G 120 15 36.59589 -121.87628  
G 120 15 36.59589 -121.87650  
G 120 15 36.59575 -121.87913  
L 120 15 0 50 36.59560 -121.88174  

Yes 

1 10 

2 1200 30 36.59560013 -121.8759155 0 
2 1200 30 36.59547806 -121.8757629 0 
2 1200 30 36.5953064 -121.8757629 0 
2 1200 30 36.5932045 -121.8759537 0 
4 1200 30 0 50 36.59109879 -121.8761368 0 

G 120 15 36.59560 -121.87592  
G 120 15 36.59548 -121.87576  
G 120 15 36.59531 -121.87576  
G 120 15 36.59320 -121.87595  
L 120 15 0 50 36.59110 -121.87614  

Yes 

1 11 The destination is out of range None Yes 

2 1 

2 1200 30 36.59841156 -121.8750153 0 
2 1200 30 36.59841156 -121.874794 0 
2 1200 30 36.59853363 -121.8746414 0 
2 1200 30 36.59870529 -121.8746414 0 
2 1200 30 36.59882736 -121.874794 0 
2 1200 30 36.59921265 -121.8755569 0 
4 1200 30 0 50 36.59959793 -121.8763428 0 

G 120 15 36.59841 -121.87502 
G 120 15 36.59841 -121.87479  
G 120 15 36.59853 -121.87464  
G 120 15 36.59871 -121.87464  
G 120 15 36.59883 -121.87479  
G 120 15 36.59921 -121.87556  
L 120 15 0 50 36.59960 -121.87634  

Yes 

2 2 4 1200 30 0 50 36.59952545 -121.8764038 0 L 120 15 0 50 36.59953 -121.87640  Yes 

2 3 

2 1200 30 36.59841156 -121.8750153 0 
2 1200 30 36.5982399 -121.8750153 0 
2 1200 30 36.59811783 -121.8751602 0 
2 1200 30 36.59811783 -121.8753815 0 
2 1200 30 36.5982399 -121.8755341 0 
2 1200 30 36.59885788 -121.8760071 0 
4 1200 30 0 50 36.59947205 -121.8764877 0 

G 120 15 36.59841 -121.87502  
G 120 15 36.59829 -121.87502  
G 120 15 36.59812 -121.87516  
G 120 15 36.59812 -121.87538  
G 120 15 36.59824 -121.87553  
G 120 15 36.59886 -121.87601  
L 120 15 0 50 36.59947 -121.87649 

Yes 

2 4 4 1200 30 0 50 36.59799957 -121.8714066 0 L 120 15 0 50 36.59800 -121.87141  Yes 

2 5 4 1200 30 0 50 36.5965004 -121.8726273 0 L 120 15 0 50 36.59650 -121.87263  Yes 
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2 6 4 1200 30 0 50 36.59553909 -121.8744125 0 L 120 15 0 50 36.59554 -121.87441 Yes 

2 7 

2 1200 30 36.59841156 -121.8750153 0 
2 1200 30 36.59841156 -121.874794 0 
2 1200 30 36.59853363 -121.8746414 0 
2 1200 30 36.59870529 -121.8746414 0 
2 1200 30 36.59882736 -121.874794 0 
2 1200 30 36.59936905 -121.8756943 0 
4 1200 30 0 50 36.59991074 -121.8765869 0 

G 120 15 36.59841 -121.87502  
G 120 15 36.59841 -121.87479  
G 120 15 36.59853 -121.87464  
G 120 15 36.59871 -121.87464  
G 120 15 36.59883 -121.87479  
G 120 15 36.59937 -121.87569  
L 120 15 0 50 36.59991 -121.87659 

Yes 

2 8 

2 1200 30 36.59841156 -121.8750153 0 
2 1200 30 36.5982399 -121.8750153 0 
2 1200 30 36.59811783 -121.8751602 0 
2 1200 30 36.59811783 -121.8753815 0 
2 1200 30 36.5982399 -121.8755341 0 
2 1200 30 36.59885788 -121.8761215 0 
4 1200 30 0 50 36.59947205 -121.876709 0 

G 120 15 36.59841 -121.87502  
G 120 15 36.59824 -121.87502  
G 120 15 36.59812 -121.87516  
G 120 15 36.59812 -121.87538  
G 120 15 36.59824 -121.87553  
G 120 15 36.59886 -121.87612  
L 120 15 0 50 36.59947 -121.87671  

Yes 

2 9 

2 1200 30 36.59968185 -121.8763809 0 
2 1200 30 36.59980774 -121.8762283 0 
2 1200 30 36.59997559 -121.8762283 0 
2 1200 30 36.60207748 -121.8764038 0 
4 1200 30 0 50 36.6041832 -121.8765869 0 

G 120 15 36.59968 -121.87638  
G 120 15 36.59981 -121.87623  
G 120 15 36.59998 -121.87623  
G 120 15 36.60208 -121.87640  
L 120 15 0 50 36.60418 -121.87659  

Yes 

2 10 

2 1200 30 36.59951401 -121.8765945 0 
2 1200 30 36.59939194 -121.8767471 0 
2 1200 30 36.59939194 -121.8769684 0 
2 1200 30 36.5995369 -121.8795929 0 
4 1200 30 0 50 36.59968185 -121.8822021 0 

G 120 15 36.59951 -121.87659  
G 120 15 36.59939 -121.87675  
G 120 15 36.59939 -121.87697  
G 120 15 36.59954 -121.87959  
L 120 15 0 50 36.59968 -121.88220  

Yes 

2 11 The destination is out of range None Yes 

3 1 

2 1200 30 36.59950638 -121.8834305 0 
2 1200 30 36.59933853 -121.8834305 0 
2 1200 30 36.59921265 -121.8832779 0 
2 1200 30 36.59921265 -121.8830566 0 
2 1200 30 36.59933853 -121.8829117 0 
2 1200 30 36.59996033 -121.882431 0 
4 1200 30 0 50 36.60057449 -121.8819504 0 

G 120 15 36.59951 -121.88343  
G 120 15 36.59934 -121.88343  
G 120 15 36.59921 -121.88328  
G 120 15 36.59921 -121.88306  
G 120 15 36.59934 -121.88291  
G 120 15 36.59996 -121.88243  
L 120 15 0 50 36.60057 -121.88195 

Yes 

3 2 4 1200 30 0 50 36.60062408 -121.8820496 0 L 120 15 0 50 36.60062 -121.88205 Yes 

3 3 

2 1200 30 36.59950638 -121.8834305 0 
2 1200 30 36.59950638 -121.8836441 0 
2 1200 30 36.59963226 -121.8837967 0 
2 1200 30 36.59980011 -121.8837967 0 
2 1200 30 36.59992218 -121.8836441 0 
2 1200 30 36.60031128 -121.8828812 0 
4 1200 30 0 50 36.60069275 -121.882103 0 

G 120 15 36.59951 -121.88343  
G 120 15 36.59951 -121.88364  
G 120 15 36.59963 -121.88380  
G 120 15 36.59980 -121.88380  
G 120 15 36.59992 -121.88364  
G 120 15 36.60031 -121.88288  
L 120 15 0 50 36.60069 -121.8821 

Yes 

3 4 4 1200 30 0 50 36.59660721 -121.8839493 0 L 120 15 0 50 36.59661 -121.88395  Yes 

3 5 4 1200 30 0 50 36.59759903 -121.8858032 0 L 120 15 0 50 36.59760 -121.88580  Yes 

3 6 4 1200 30 0 50 36.59902191 -121.8870087 0 L 120 15 0 50 36.59902 -121.88701  Yes 

3 7 

2 1200 30 36.59950638 -121.8834305 0 
2 1200 30 36.59933853 -121.8834305 0 
2 1200 30 36.59921265 -121.8832779 0 
2 1200 30 36.59921265 -121.8830566 0 
2 1200 30 36.59933853 -121.8829117 0 
2 1200 30 36.60006332 -121.8822403 0 
4 1200 30 0 50 36.60078049 -121.8815536 0 

G 120 15 36.59951 -121.88343 
G 120 15 36.59934 -121.88343  
G 120 15 36.59921 -121.88328  
G 120 15 36.59921 -121.88306  
G 120 15 36.59934 -121.88291  
G 120 15 36.60006 -121.88224  
L 120 15 0 50 36.60078 -121.88155 

Yes 

3 8 2 1200 30 36.59950638 -121.8834305 0 G 120 15 36.59951 -121.88343  Yes 
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2 1200 30 36.59950638 -121.8836441 0 
2 1200 30 36.59963226 -121.8837967 0 
2 1200 30 36.59980011 -121.8837967 0 
2 1200 30 36.59992218 -121.8836441 0 
2 1200 30 36.60039902 -121.8828812 0 
4 1200 30 0 50 36.60086823 -121.882103 0  

G 120 15 36.59951 -121.88364  
G 120 15 36.59963 -121.88380  
G 120 15 36.59980 -121.88380  
G 120 15 36.59992 -121.88364  
G 120 15 36.60040 -121.88288  
L 120 15 0 50 36.60087 -121.88210 

3 9 

2 1200 30 36.60060883 -121.8818436 0 
2 1200 30 36.60048676 -121.881691 0 
2 1200 30 36.60048676 -121.8814774 0 
2 1200 30 36.60063553 -121.8788528 0 
4 1200 30 0 50 36.60078049 -121.8762436 0 

G 120 15 36.60061 -121.88184  
G 120 15 36.60049 -121.88169  
G 120 15 36.60049 -121.88148  
G 120 15 36.60064 -121.87885  
L 120 15 0 50 36.60078 -121.87624 

Yes 

3 10 

2 1200 30 36.60078049 -121.8820648 0 
2 1200 30 36.60090256 -121.8822098 0 
2 1200 30 36.60107422 -121.8822098 0 
2 1200 30 36.60317993 -121.8820343 0 
4 1200 30 0 50 36.60528183 -121.8818436 0 

G 120 15 36.60078 -121.88206  
G 120 15 36.60090 -121.88221  
G 120 15 36.60107 -121.88221  
G 120 15 36.60318 -121.88203  
L 120 15 0 50 36.60528 -121.88184 

Yes 

3 11 The destination is out of range. None Yes 

4 1 

2 1200 30 36.60340881 -121.875618 0 
2 1200 30 36.603405 -121.8758316 0 
2 1200 30 36.60327911 -121.8759842 0 
2 1200 30 36.60310745 -121.8759842 0 
2 1200 30 36.60298538 -121.8758316 0 
2 1200 30 36.60260391 -121.8750534 0 
4 1200 30 0 50 36.60222244 -121.8742905 0 

G 120 15 36.60341 -121.87562  
G 120 15 36.60341 -121.87583  
G 120 15 36.60328 -121.87598  
G 120 15 36.60311 -121.87598  
G 120 15 36.60299 -121.87583  
G 120 15 36.60260 -121.87505  
L 120 15 0 50 36.60222 -121.87429 

Yes 

4 2 4 1200 30 0 50 36.60229492 -121.8742371 0 L 120 15 50 36.60229 -121.87424  Yes 

4 3 

2 1200 30 36.60340881 -121.875618 0 
2 1200 30 36.60357285 -121.875618 0 
2 1200 30 36.60369492 -121.8754654 0 
2 1200 30 36.60369492 -121.8752441 0 
2 1200 30 36.60357285 -121.8750916 0 
2 1200 30 36.60295486 -121.8746185 0 
4 1200 30 0 50 36.60234451 -121.8741379 0 

G 120 15 36.60341 -121.87562  
G 120 15 36.60357 -121.87562  
G 120 15 36.60369 -121.87547 
G 120 15 36.60369 -121.87524  
G 120 15 36.60357 -121.87509  
G 120 15 36.60295 -121.87462  
L 120 15 0 50 36.60234 -121.87414 

Yes 

4 4 4 1200 30 0 50 36.6038208 -121.8792191 0 L 120 15 0 50 36.60382 -121.87922  Yes 

4 5 4 1200 30 0 50 36.60531998 -121.8779907 0 L 120 15 0 50 36.60532 -121.87799  Yes 

4 6 4 1200 30 0 50 36.60628128 -121.8762131 0 L 120 15 0 50 36.60628 -121.87621  Yes 

4 7 

2 1200 30 36.60340881 -121.875618 0 
2 1200 30 36.603405 -121.8758316 0 
2 1200 30 36.60327911 -121.8759842 0 
2 1200 30 36.60310745 -121.8759842 0 
2 1200 30 36.60298538 -121.8758316 0 
2 1200 30 36.6024437 -121.8749313 0 
4 1200 30 0 50 36.60190964 -121.8740311 0 

G 120 15 36.60341 -121.87562  
G 120 15 36.60341 -121.87583  
G 120 15 36.60328 -121.87598  
G 120 15 36.60311 -121.87598  
G 120 15 36.60299 -121.87583  
G 120 15 36.60244 -121.87493  
L 120 15 0 50 36.60191 -121.87403 

Yes 

4 8 

2 1200 30 36.60340881 -121.875618 0 
2 1200 30 36.60357285 -121.875618 0 
2 1200 30 36.60369492 -121.8754654 0 
2 1200 30 36.60369492 -121.8752441 0 
2 1200 30 36.60357285 -121.8750916 0 
2 1200 30 36.60293198 -121.8744659 0 
4 1200 30 0 50 36.60229492 -121.8738327 0 

G 120 15 36.60341 -121.87562  
G 120 15 36.60357 -121.87562  
G 120 15 36.60369 -121.87547  
G 120 15 36.60369 -121.87524  
G 120 15 36.60357 -121.87509  
G 120 15 36.60293 -121.87447  
L 120 15 0 50 36.60229 -121.87383 

Yes 

4 9 

2 1200 30 36.60213852 -121.8742447 0 
2 1200 30 36.60201263 -121.8743973 0 
2 1200 30 36.60184479 -121.8743973 0 
2 1200 30 36.59973907 -121.8742065 0 

G 120 15 36.60214 -121.87424  
G 120 15 36.60201 -121.87440  
G 120 15 36.60184 -121.87440  
G 120 15 36.59974 -121.87421  

Yes 
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4 1200 30 0 50 36.59763718 -121.8740311 0 L 120 15 0 50 36.59764 -121.87403 

4 10 

2 1200 30 36.60230637 -121.8740311 0 
2 1200 30 36.60243225 -121.8738785 0 
2 1200 30 36.60243225 -121.8736572 0 
2 1200 30 36.60228348 -121.8710556 0 
4 1200 30 0 50 36.60213852 -121.8684311 0 

G 120 15 36.60231 -121.87403  
G 120 15 36.60243 -121.87388  
G 120 15 36.60243 -121.87366  
G 120 15 36.60228 -121.87106  
L 120 15 0 50 36.60214 -121.86843 

Yes 

4 11 The destination is out of range None Yes 

Table 10.   Phase I Test Results 
 

c. Analysis of Phase I Results  
All 44 test cases returned positive results.  Every flight plan produced 

during Phase I testing was optimized in two-dimensions.  In each set, tests 2, 4, 5 and 6 

produced flight plans directing the UAV to fly straight to its destination, as was expected.  

Tests 1, 3, 7 and 8 resulted in a series of waypoints taking the UAV 200 meters (four 

times its turn radius) forward, then making 45 degree turns around a turn circle with 

radius equal to 50 meters towards its destination.  All turns were called in the correct 

direction.  Left turns were consistently made in tests 1, 7 and 9 while right turns were 

made in the 3rd, 8th and 10th tests of each set.  Test 9 and 10 executions returned proper 

flight plans entailing an immediate turn towards the destination, and PCPTAv1 correctly 

identified that all test 11 destinations were out of range.         

Flight plans were also packetized and communicated to the Kestrel 

Autopilot correctly.  PCPTAv1 dat.txt output was identical in each case to the flight plan 

observed in VC.     

D. PHASE II:   CONTACT INTERCEPTION SCENARIO TESTING 

1. Contact Interception Calculation Testing 

Interception scenarios involve many mathematical processes that are not used 

during path creation.  Intercept location calculations are performed prior to flight plan 

creation, as no flight plan can be constructed without an established final destination.  

The accuracy of the initial intercept locations produced by PCPTAv1 is evaluated during 

Phase II testing.  

a. Test Case Orientation  
Test case destinations were placed 500 meters from the UAV at relative 

bearings of 45, 135, 225 and 315 degrees (see Figure 45).  UAV heading was maintained 
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at 0 degrees true through the entire phase.  Four tests were conducted at each bearing.  

The first test involves a contact moving away from the UAV in both X and Y, (with 

reference to Figure 45) at a greater velocity than the maximum speed of the UAV.  This 

should always cause PCPTAv1 to output a “destination unreachable” message to the user.  

In the second, the contact is moving away from the UAV in X and Y, but is proceeding at 

a slower rate than the UAV’s maximum speed.  The third involves a contact moving 

closer to the UAV in X and/or Y, with velocity greater than that which the UAV is 

capable.  In the fourth, the contact is moving closer to the UAV in X and/or Y, with a 

velocity that is less than the UAV’s maximum speed.  This test should always produce a 

reachable intercept location.              

 
Figure 45.   Phase II Test Case Layout (UAV bearing 0 degrees true) 

 
b. Testing Method  
PCPTAv1 output will be compared to a mathematical contact interception 

model.  This model is derived in the following manner.  At time t, the vector “C,” 

describing the contact’s position in X and Y (with reference to Figure 45) can be 

described by:  ),( 00 vtyutxC ++= , where 0x  is the X component of the contact’s initial 

position, and 0y  is the Y component.  The contact moves with velocity u in the X 

direction and v in the Y direction.  At an angle ØC and velocity w, u=w*cos(ØC) and 

v=w*sin(ØC).  In this model, the UAV’s initial position is (0,0), its velocity is p and it 
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must travel at a heading ØI to get to the intercept location.  UAV position U  can be 

described by:  U = (pt*cos(ØI), pt*sin(ØI)).  To intercept, the contact and UAV’s 

positions must be equal in X and Y; therefore the interception point is:  ( utx +0 = 

pt*cos(ØI), vty +0 = pt*sin(ØI)).  These equations can be reorganized to:   

 
Figure 46.   System of nonlinear equations describing active UAV/contact interception 

points 
 

We are left with two equations and two unknowns (t and ØI), a solvable 

system.  Input and output angles in these equations are based on a coordinate system 

where true north is equal to 90 degrees and true east is at 0 degrees.  The time and angle 

of interception computed with this system correspond to the initial time of interception 

and initial UAV heading, as this calculation does not factor in the time it would take the 

UAV to turn toward its destination.  Initial destination values provide a sufficient test to 

PCPTAv1’s interception scenario output because the computation responsible for 

determining the final destination calls the same functions in the same order as the initial 

calculation.  Also, the distance input used to finalize the destination is based on the 

circumference of the UAV’s turn circle; a very basic calculation given the fact that the 

UAV turn radius is inputted by the user.   

Phase II testing was conducted by comparing PCPTAv1 initial intercept 

values to those solved for using the system of equations described above.   PCPTAv1 

does not output these numbers, but they are easily attained during execution with the 

Microsoft Visual Studio 2005 Professional Edition debugger.  The mathematical model 

was solved for each test case using Maple 10.  An unabridged copy of the Maple 10 input 

and output for each test case can be viewed in Appendix B.  UAV inputs for each case 

are detailed in Table 11, WSN contact inputs in Table 12.  Once t and ØI are acquired in 

PCPTAv1 and Maple 10, they are used as inputs, along with contact velocity, to the  
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equations described in Figure 36 to find a latitude and longitude for each calculated 

interception point.  The distance between these points is then measured using the 

haversine formula.    

Test 
Case # 

UAV Initial 
Position 

UAV Turn 
Radius 

(m) 

UAV 
Range  

(nm) 

UAV Max 
Speed  
(m/s) 

UAV Initial 
Heading  

True North=0.0 
True East=90.0 

(degrees) 
1 

36.59560 
-121.87613 50.0 5.0 15.0 0.0 

2 
36.59560 

-121.87613 50.0 5.0 15.0 0.0 

3 
36.59560 

-121.87613 50.0 5.0 15.0 0.0 

4 
36.59560 

-121.87613 50.0 5.0 15.0 0.0 

5 
36.59968 

-121.87660 50.0 5.0 15.0 0.0 

6 
36.59968 

-121.87660 50.0 5.0 15.0 0.0 

7 
36.59968 

-121.87660 50.0 5.0 15.0 0.0 

8 
36.59968 

-121.87660 50.0 5.0 15.0 0.0 

9 
36.60078 

-121.88184 50.0 5.0 20.0 0.0 

10 
36.60078 

-121.88184 50.0 5.0 20.0 0.0 

11 
36.60078 

-121.88184 50.0 5.0 20.0 0.0 

12 
36.60078 

-121.88184 50.0 5.0 20.0 0.0 

13 
36.60214 

-121.87402 50.0 5.0 30.0 0.0 

14 
36.60214 

-121.87402 50.0 5.0 30.0 0.0 

15 
36.60214 

-121.87402 50.0 5.0 30.0 0.0 

16 
36.60214 

-121.87402 
50.0 5.0 30.0 0.0 

Table 11.   Phase II Test Case Inputs:  Active UAV 
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Test 
Case # 

Contact Initial 
Position  

(WSN Location) 

Contact Heading 
True North=0.0 
True East=90.0  

(degrees) 

Contact Heading 
True North=90.0 

True East=0.0 
(degrees) 

Contact 
Speed 
 (m/s) 

1 
36.598778985112 
-121.87217303657 

45.0 45.0 20.0 

2 
36.598778985112 
-121.87217303657 

23.0 67.0 5.0 

3 
36.598778985112 
-121.87217303657 

250.0 200.0 25.0 

4 
36.598778985112 
-121.87217303657 

260.0 190.0 10.0 

5 
36.5965034321 

-121.87263760624 
160.0 290.0 16.0 

6 
36.5965034321 

-121.87263760624 
110.0 340.0 14.0 

7 
36.5965034321 

-121.87263760624 
305.0 145.0 30.0 

8 
36.5965034321 

-121.87263760624 
1.0 89.0 2.0 

9 
36.5976009380 

-121.88580394110 
200.0 250.0 100.0 

10 
36.5976009380 

-121.88580394110 
265.0 185.0 19.0 

11 
36.5976009380 

-121.88580394110 
85.0 5.0 50.0 

12 
36.5976009380 

-121.88580394110 
135.0 315.0 15.0 

13 
36.60531711265 

-121.87799060184 
270.0 180.0 32.0 

14 
36.60531711265 

-121.87799060184 
335.0 95.0 25.0 

15 
36.60531711265 

-121.87799060184 
170.0 280.0 35.0 

16 
36.60531711265 

-121.87799060184 
83.0 7.0 13.0 

Table 12.   Phase II Test Case Inputs:  WSN Output 
 
 

2. Phase II Results and Analysis 

Maple 10 calculations yielded five cases where the time to intercept was negative.  

A negative time value, such as -14.2857233 in test case 1, means the UAV would require 
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14.2857233 additional seconds to intercept the contact.  In other words, this indicates a 

contact is impossible for the active UAV to intercept.  PCPTAv1 correctly reported the 

destination out of range in each of these cases.   

Phase II results show PCPTAv1’s contact interception point estimations to be 

extremely accurate.  According to the measurement between calculated and estimated 

intercept locations, the largest divergence was approximately 0.0156 meters.  This is 

somewhat disconcerting, as PCPTAv1 theoretically should only be accurate to within five 

meters.  The PCPTAv1 and Maple 10 initial time to intercept and initial bearing values 

are very close, but contain enough disparity to result in greater locational differences than 

those reported using the testing scheme outlined in the previous section.  The (nextPoint) 

function used to acquire the interception latitudes and longitudes based on calculated 

initial values clearly lacks the accuracy required to reflect small differences in heading 

and distance in its output.   

To address this shortcoming, an additional column was added to Table 14, 

detailing the results of an additional comparison.  The initial time to intercept can be 

converted to the distance traveled by the contact since its velocity is known.  The fact that 

both the calculated and estimated interception point must fall along the contact’s 

projected path enables us to assess the variance in the contacts position between these 

locations using the difference in time to initial intercept.  For example, in test case 2, 

taking 50.0-48.79618653 yields 1.20381347 seconds.  Multiplied by a contact velocity of 

5 m/s, we see that the estimated interception point produced by PCPTAv1 is 6.01906735 

meters away from the correct location.   

This evaluation method returned realistic results.  PCPTAv1 output was within 5 

meters of the actual intercept location in seven of the sixteen test cases.  Only in the 

fourteenth test did PCPTAv1 produce a location that was inaccurate by more than 

approximately 8 meters.  The error in this case can be attributed to rounding and the 

imprecision of the nextPoint function (Figure 36), as evinced by the Phase II test results.  

The time to intercept computed within PCPTAv1 was never off by more than 1 second, 

and the worst initial bearing error recorded was 1.345 degrees.   
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Since the time differential is multiplied by contact velocity, it seems logical to 

assume faster contacts will result in greater intercept location error.  This however did not 

prove true.  Tests involving a contact with velocity greater than UAV max speed had an 

average error of 6.2888 meters, while those involving a slower contact had error 

averaging 0.9931 meters.  Cases where the contact was moving closer to the UAV in X or 

Y, at a higher velocity were consistently the most accurate, while those involving a 

contact moving away from the UAV in both X and Y at a slower velocity recorded the 

worst error.  It is not currently understood why this relationship exists.   

Phase II test results showed that PCPTAv1 produces intercept locations with 

greater error than five meters quite regularly.  Phase II exposed the imprecision of the 

nextPoint function over small distances, which is the probable source of intercept 

location error within PCPTAv1 calculations.  This error is acceptable in the context of 

surveillance operations, but must be noted and addressed during the development of this 

project.  Although PCPTAv1 intercept scenario calculations exhibit an error above that 

expected from the estimation scheme, Phase II testing showed the application is capable 

of successfully guiding UAV—WSN contact interception operations.       

 

 PCPTAv1 Results Maple 10 Results 

Test 
Case 

# 

Initial 
Time 

to 
Intercept 

(s) 

Initial 
Bearing 

True 
North=0.0 

True East=90.0 
(degrees) 

Initial Time to 
Intercept (s) 

Initial Bearing  
True North=90.0 

True East=0.0  
(radians) 

Initial 
Bearing 

True North=0.0 
True East=90.0 

(degrees) 

1 Destination out of range. 
-14.2857233 

(None) 
-2.356194490 

(None) N/A 

2 50.000000 37.653172 48.79618653 0.9105929386 37.82686776 
3 14.999999 359.05942 15.01263570 1.566925476 0.2217834137 
4 23.000000 21.320089 22.67412202 1.177773695 22.51853805 

5 Destination out of range. 
-17.9273490 

(None) 
2.823847404 

(None) N/A 

6 456.78571 111.76167 456.4175971 -.3799353884 111.7686942 
7 11.499999 156.22878 11.46511546 -1.140085211 155.3220709 
8 32.500000 128.60730 30.63694499 -.6893385368 129.4961888 

9 Destination out of range. 
-4.72035089 + 
1.93905578 I 

(None) 

-.7853981634 + 
1.379921070 I 

(None) 
N/A 

10 389.47368 262.63806 389.6547793 -3.013073433 262.6363911 
11 Destination out of range. 9.119574378 + -.7853981634 + N/A 
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5.99006596 I 
(None) 

1.052527834 I 
(None) 

12 38.333333 175.79776 37.79646228 -1.508132060 176.409602 

13 Destination out of range. 
-11.8133120 

(None) 
-1.639905048 

(None) N/A 

14 81.600000 347.46674 80.88048722 1.790909649 347.3884356 
15 9.8571428 271.69440 9.810937985 3.089289635 272.9967422 
16 13.846153 335.73236 13.64065931 2.017821518 334.3873432 

Table 13.   Phase II Test Results:  Data Collection 
 
 

Test 
Case 

# 

PCPTAv1 Initial 
Interception 

Point  

Maple 10 Initial 
Interception 

Point 

Distance 
Between 

Interception Points 
(m) 

Gap Between 
Estimated and 

Calculated 
Distance 

Traveled By  
Contact (m) 

1 Destination out of range. 

2 36.595602883422572 
-121.8761272289175 

36.595602807405356 
-121.8761272850218 0.0098186221061803327 6.01906735 

3 36.595601092440269 
-121.8761300223393 

36.595601093499738 
-121.8761299947279 0.0024661339731486824 0.31589253 

4 36.595601560649712 
-121.8761292413374 

36.595601525641833 
-121.8761292121698 0.0046801626935933007 3.2587798 

5 Destination out of range. 

6 36.599667664552555 
-121.8765615097983 

36.599667670708278 
-121.8765615426991 0.0030137181618778179 5.1535806 

7 36.599679233413973 
-121.8765995794269 

36.599679241161816 
-121.8765995656908 0.0014975960668915573 1.0465362 

8 36.599678522870910 
-121.8765976957696 

36.599678580661660 
-121.8765978550277 0.015591235880672103 3.7261102 

9 Destination out of range. 

10 36.600775153182695 
-121.8818867277044 

36.600775149835798 
-121.8818867492561 0.0019582280519072517 3.4408867 

11 Destination out of range. 

12 36.600776287117647 
-121.8818396601896 

36.600776336454182 
-121.8818397136625 0.0072670764261777553 8.0530658 

13 Destination out of range. 

14 36.602151604079403 
-121.8740232133115 

36.602151498254599 
-121.8740232045554 0.011785165552620259 17.9878195 

15 36.602140042459581 
-121.8740217879334 

36.602140074719522 
-121.8740217778964 0.0036948523728406093 1.61716852 

16 36.602141838846023 
-121.8740210326680 

36.602141791885543 
-121.8740210700294 0.0061917889891614196 2.67141797 

Table 14.   Phase II Test Results:  Distance between estimated interception point and 
calculated location 
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V. CONCLUSION 

A. SUMMARY AND CONCLUSIONS 

We began with an introduction to WSNs and the evidence supporting the vast 

potential this technology has to benefit a wide range of surveillance applications.  We 

then discussed UAV—WSN integration and the motivations driving research toward this 

end.   

To understand the benefits of this endeavor, one must first become familiar with 

the current state of WSN technology, the progress made in WSN contact detection and 

identification mechanisms, and the UAV equipment available for use in this capacity.  

The Background chapter covered these topics in great detail.  Aside from a general 

understanding, it is important for the reader to appreciate the power management and 

security issues relating to WSNs.  The survivability of this technology is an important 

factor to consider during operational planning, especially since these systems will be 

deployed in hostile environments in many military and law enforcement applications.   

The OTAv1 and TRSSv4 were presented to familiarize the reader with the prior 

thesis work completed in WSN contact detection and classification.  OTAv1 is 

responsible for parsing and evaluating the WSN output stream.  This application detects 

WSN contacts by comparing WSN sensor readings to predefined thresholds, while 

TRSSv3 directs cameras within the WSN to take pictures of each contact.  While these 

pictures will substantially aid the user’s contact classification efforts, some circumstances 

require further investigation of the contact.  UAVs provide an efficient and inexpensive 

solution to this problem.        

We approached UAV technology with the scope of this thesis in mind.  Both the 

MMALV and Procerus Unicorn utilize the Kestrel Autopilot System, for which 

PCPTAv1 was designed.  MMALV is a state of the art micro UAV that combines the 

award winning flight design of the UF MAV with an efficient terrestrial locomotion 

solution developed at Case Western Reserve University.  This versatile platform could 

serve in an investigative role, working in conjunction with a WSN to classify contacts, or  
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could actually function as a node within an adaptable WSN.  The Procerus Unicorn was 

used during the development of PCPTAv1 as a test bed to evaluate the precision of its 

output.       

A discussion of the Kestrel Autopilot System closed out the Background chapter.  

This system includes all the hardware and software required to fly a UAV autonomously.  

Kestrel Autopilot is the “brain” of the UAV, controlling its various functions according to 

user input and the autonomous control offered within VC.  The VCDI allows user 

applications to send command packets to the Kestrel Autopilot through VC.  Users 

interface with the Kestrel Autopilot System at a ground station, which transmits and 

receives packets from the Kestrel Autopilot through a Procerus Commbox. 

In Chapter III, PCPTAv1 was introduced to the reader.  PCPTAv1 represents the 

main contribution of this thesis, and a large step towards the implementation of a fully 

integrated UAV—WSN system.  Upon activation by a WSN contact report, PCPTAv1 

can autonomously send a UAV to either the instigated WSN cluster or to an interception 

point along the contact’s estimated path.  All calculated paths are optimized in two 

dimensions. 

The thesis continued in Chapter IV with a detailed report and analysis of the 

testing conducted to evaluate PCPTAv1 accuracy and program correctness.  Phase I 

testing, which assessed PCPTAv1’s Kestrel command packet crafting methods and flight 

plan optimization scheme was a resounding success.  In all forty-four Phase I test cases, 

PCPTAv1 output was packetized according to the Kestrel Autopilot System specification 

and was optimized in two dimensions.  Phase II testing evaluated the accuracy of 

PCPTAv1’s contact interception point calculations.  While this phase resulted in greater 

error than what was theoretically to be expected, the recorded levels of inaccuracy would 

not impede the UAV’s ability to acquire a visual on the contact during an interception 

scenario. 

The vantage point UAVs offer as well as the relative ease with which it can be 

modified to attain the most telling imagery of a WSN contact, make the UAV an effective 

tool for WSN contact classification.  This thesis has successfully designed and tested an 

application that takes advantage of that fact.                          
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B. RECOMMENDATIONS FOR FUTURE WORK 

Much work remains to be done before it is possible to deploy a fully integrated 

autonomous UAV—WSN system.  One need not look further than the PCPTAv1 

assumptions detailed in Chapter III to find worthwhile ventures in this space.  For 

PCPTAv1 to acquire the input it needs to guide autonomous UAV surveillance 

operations, OTAv1 must be expanded upon to function within any WSN node layout.  

GPS data is also a necessity that OTAv1 does not currently provide due to the WSN 

hardware for which it was developed.   

 PCPTAv1 was the first attempt at an application providing autonomous UAV 

contact classification support for WSNs in an ongoing project at the Naval Postgraduate 

School.  Development will continue, as this application is by no measure complete.  

Future development must focus first on the manner in which contact interception is 

calculated.  Libraries capable of solving a system of nonlinear equations should be added 

to PCPTAv1, and interception location should be calculated in the manner discussed in 

Chapter IV and Appendix B.  An accurate method for conversion from relative position 

to the geographic coordinate system would also be needed for the application to benefit 

from the precision of these calculations.   

 The flight plans produced in PCPTAv1 do not account for the topology of the area 

of operation.  Optimized paths are constructed in two dimensions, but PCPTAv1 does not 

currently address the third.  An algorithm that attempts to minimize terrain height 

gradients as well as the length of the path traveled to a destination remains to be 

implemented.  As do the mechanisms required for collision detection and avoidance.              
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APPENDIX A. USER DEFINED VIRTUAL COCKPIT 
DEVELOPMENT INTERFACE COMMAND PACKET STRUCTURE 

GUIDE 

Byte 

Index 
Type Name Description Value 

N/A N/A Header 

Header; added by VC before 

packet is sent to the Kestrel 

Autopilot (not part of user 

defined packets) 

0xff 

0 

32-Bit 

Integer 

 

VCDI Packet Type

Indicates either Passthrough 

packet (10) or Packet 

Forwarding Setup packet (20) 

10 

4 
32-Bit 

Integer 
Packet Size 

Number of bytes from byte 8 

to the end of the packet 

LAST 

BYTE 

minus 8 

8 
16-Bit 

Integer 
Destination 

Will hold the destination 

address of a Kestrel Autopilot 

1032 

(default) 

10 UCHAR 
Kestrel Packet 

Type 

Defines the type of the 

Kestrel Packet; Command 

Packets (50), Command Edit 

Packets (53), etc.)  

50 

11 UCHAR Command Type 
Either a Goto, Loiter or Jump 

Command 
Varies 

12 UCHAR Command Number

Number describing the 

position of this command in 

the flight plan 

Varies 
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13 UCHAR Total Commands 
Total number of commands 

in the current flight plan 
Varies 

14 VARIOUS 
Command Specific 

Bytes 
Refer to Tables 4, 5 and 6  Varies 

LAST 

BYTE 
UCHAR Payload 

For future use, but must be 

included in the packet as a 

place holder 

0 

N/A N/A Packet ID 

Distinguishes one packet 

from another; added by VC 

before packet is sent to the 

Kestrel Autopilot (not part of 

user defined packets) 

Varies 

N/A N/A XOR Check 

Check to maintain packet 

integrity; added by VC before 

packet is sent to the Kestrel 

Autopilot (not part of user 

defined packets)  

Varies 

N/A N/A Footer 

Footer; added by VC before 

packet is sent to the Kestrel 

Autopilot (not part of user 

defined packets)  

0xfe 
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APPENDIX B. MAPLE 10 PHASE II TEST CASE 
CALCULATIONS 
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APPENDIX C. PCPTAV1 CODE 

////////////////////////////////////////////////////////////// 
//Name: DevDemo.cpp 
// 
//Author: Procerus Technologies (http://www.procerusuav.com/)  
// 
//Description: Initializes the Windows application and defines 
//             the class behaviors for the application. 
/////////////////////////////////////////////////////////////// 
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#include "stdafx.h" 
#include "DevDemo.h" 
#include "DevDemoDlg.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
// CDevDemoApp 
BEGIN_MESSAGE_MAP(CDevDemoApp, CWinApp) 
 ON_COMMAND(ID_HELP, CWinApp::OnHelp) 
END_MESSAGE_MAP() 
 
// CDevDemoApp construction 
CDevDemoApp::CDevDemoApp() 
{ 
  
 // Place all significant initialization in InitInstance 
} 
 
// The one and only CDevDemoApp object 
CDevDemoApp theApp; 
 
// CDevDemoApp initialization 
BOOL CDevDemoApp::InitInstance() 
{ 

// InitCommonControls() is required on Windows XP if an 
// application; manifest specifies use of ComCtl32.dll version 6 
// or later to enable visual styles.  Otherwise, any window  
// creation will fail. 

 InitCommonControls(); 
 
 CWinApp::InitInstance(); 
 
 if (!AfxSocketInit()) 
 { 
  AfxMessageBox(IDP_SOCKETS_INIT_FAILED); 
  return FALSE; 
 } 
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 AfxEnableControlContainer(); 
 
 // Standard initialization 
 // If you are not using these features and wish to reduce the 

// size of your final executable, you should remove from the  
// following the specific initialization routines you do not need 

 SetRegistryKey(_T("Local AppWizard-Generated Applications")); 
 
 CDevDemoDlg dlg; 
 m_pMainWnd = &dlg; 
 INT_PTR nResponse = dlg.DoModal(); 
 if (nResponse == IDOK) 
 { 
   
  //  dialog is dismissed with OK 
 } 
 else if (nResponse == IDCANCEL) 
 { 
  // dialog is dismissed with Cancel 
 } 
 
 // Since the dialog has been closed, return FALSE so that we exit 

// the application, rather than start the application's message  
// pump. 

 return FALSE; 

} 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
////////////////////////////////////////////////////////////// 



109

//Name: DevDemo.cpp 
// 
//Author: Procerus Technologies (http://www.procerusuav.com/)  
// 
//Description: Main Windows application header file 
/////////////////////////////////////////////////////////////// 
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#include "resource.h"  // main symbols 
 
#pragma once 
 
#ifndef __AFXWIN_H__ 
 #error include 'stdafx.h' before including this file for PCH 
#endif 
 
// CDevDemoApp: 
// See DevDemo.cpp for the implementation of this class 
class CDevDemoApp : public CWinApp 
{ 
 public: 
  CDevDemoApp(); 
 
 // Overrides 
 public: 
  virtual BOOL InitInstance(); 
 
  // Implementation 
  DECLARE_MESSAGE_MAP() 
}; 
 

extern CDevDemoApp theApp; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
////////////////////////////////////////////////////////////// 
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//Name: DevDemoDlg.cpp 
// 
//Authors: Procerus Technologies (www.procerusuav.com) and 
//         Stephen Schall 
// 
//Description: Implementation file for VC packet crafting,  
//             telemetry data acquisition, and button handlers. 
//             OnBnClickedPumpData() initiates the UAV path-planning 
//             operation. 
/////////////////////////////////////////////////////////////// 
// Applicable to all code authored by Procerus Technologies:   
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#include <Windows.h> 
#include "stdafx.h" 
#include "DevDemo.h" 
#include "DevDemoDlg.h" 
#include <string> 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
using namespace std; 
 
 
// Author: Procerus Technologies 
// Description: CAboutDlg dialog used for App About. 
class CAboutDlg : public CDialog 
{ 
 public: 
 CAboutDlg(); 
 
 // Dialog Data 
 enum { IDD = IDD_ABOUTBOX }; 
 
 protected: 
 // DDX/DDV support 
 virtual void DoDataExchange(CDataExchange* pDX);     
 
 // Implementation 
 protected: 
 DECLARE_MESSAGE_MAP() 
}; 
 
 
// Author: Procerus Technologies 
// Description: CAboutDlg constructor. 
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 
{ 
} 
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// Author: Procerus Technologies 
// Description: CAboutDlg dialog data exchange. 
void CAboutDlg::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
END_MESSAGE_MAP() 
 
 
// Author: Procerus Technologies 
// Description: CDevDemoDlg dialog.  
CDevDemoDlg::CDevDemoDlg(CWnd* pParent /*=NULL*/) 
 : CDialog(CDevDemoDlg::IDD, pParent) 
{ 
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 
 m_hSmallIcon = (HICON) LoadImage(AfxGetInstanceHandle(), 
  (LPCTSTR)IDR_MAINFRAME,IMAGE_ICON,16,16,0); 
 m_VCConnector = NULL; 
 
 m_UAVAddress = 1032; //default uav address 
} 
 
 
// Author: Procerus Technologies 
// Description: CDevDemoDlg dialog data exchange. 
void CDevDemoDlg::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
//Dialog message mapping 
BEGIN_MESSAGE_MAP(CDevDemoDlg, CDialog) 
 ON_WM_SYSCOMMAND() 
 ON_WM_PAINT() 
 ON_WM_QUERYDRAGICON() 
 ON_BN_CLICKED(IDCANCEL, OnBnClickedCancel) 
 ON_BN_CLICKED(IDOK, OnBnClickedOk) 
 ON_COMMAND(IDMF_EXIT, OnExit) 
 ON_COMMAND(IDM_ABOUTBOX, OnAboutbox) 
 ON_COMMAND(IDMF_CONNECT, OnConnect) 
 ON_BN_CLICKED(IDC_CMD_ZERO_PRESS, OnBnClickedCmdZeroPress) 
 ON_BN_CLICKED(IDC_ALL_PACKETS_RADIO, OnAllPackets) 
 ON_BN_CLICKED(IDC_ACK_RADIO, OnAcksOnly) 
 ON_BN_CLICKED(IDC_STANDARD_ACK_RADIO, OnAcksStd) 
 ON_MESSAGE(WM_DATA_MSG,OnVCMsg) 
 ON_BN_CLICKED(IDC_BUTTON1, OnBnClickedPumpData) 
 ON_BN_CLICKED(IDC_ADDRESS_BUTTON, 

&CDevDemoDlg::OnBnClickedAddressButton) 
END_MESSAGE_MAP() 

 
 
// Author: Procerus Technologies, modified by Stephen Schall  
// Description: CDevDemoDlg message handlers. 
BOOL CDevDemoDlg::OnInitDialog() 
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{ 
 CDialog::OnInitDialog(); 
 
 //Initialize windows XP themes 
 InitCommonControls(); 
 
 // Add "About..." menu item to system menu. 
 // IDM_ABOUTBOX must be in the system command range. 
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); 
 ASSERT(IDM_ABOUTBOX < 0xF000); 
 
 CMenu* pSysMenu = GetSystemMenu(FALSE); 
 if (pSysMenu != NULL) 
 { 
  CString strAboutMenu; 
  strAboutMenu.LoadString(IDS_ABOUTBOX); 
  if (!strAboutMenu.IsEmpty()) 
  { 
   pSysMenu->AppendMenu(MF_SEPARATOR); 
   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, 

strAboutMenu); 
  } 
 } 
 
 // Set the icon for this dialog.  The framework does this  

// automatically when the application's main window is not a  
// dialog 

 SetIcon(m_hIcon, TRUE);  // Set big icon 
 SetIcon(m_hSmallIcon, FALSE); // Set small icon 
 
 //Now lets try to create the connection socket to the VC 
 m_VCConnector = new CSocketConnector("127.0.0.1",GetSafeHwnd()); 
  
 //Check to see if we are connected 
 if(m_VCConnector->IsConnected() == FALSE) 
 { 
  delete m_VCConnector; 
  m_VCConnector = NULL; 
  SetWindowText("PCPTAv1 - Not Connected To Virtual 

Cockpit"); 
 } 
 else 
 { 
  SetWindowText("PCPTAv1 - Connected To Virtual Cockpit"); 
  OnAllPackets(); //Default to VC forwarding all packets 
  ((CButton*)GetDlgItem(IDC_ALL_PACKETS_RADIO))->SetCheck(1); 
 
 } 
 
 //Set default Multiplier 
 GetDlgItem(IDC_MULTIPLIER)->SetWindowText("50.0"); 
 
 //Set default UAV Max Speed 
 GetDlgItem(IDC_MAX_SPEED)->SetWindowText("15.0"); 
 
 //Set default UAV Range 
 GetDlgItem(IDC_RANGE)->SetWindowText("4.0"); 
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 //Set default UAV Address for UAV-WSN System 
 GetDlgItem(IDC_ADDRESS)->SetWindowText("1032"); 
 OnBnClickedAddressButton(); 
 
 return TRUE;  
} 
 
 
// Author: Procerus Technologies, modified by Stephen Schall  
// Description: Handles system commands. 
void CDevDemoDlg::OnSysCommand(UINT nID, LPARAM lParam) 
{ 
 if ((nID & 0xFFF0) == IDM_ABOUTBOX) 
 { 
  CAboutDlg dlgAbout; 
  dlgAbout.DoModal(); 
 } 
 else if (nID == SC_CLOSE)  
 { 
  DestroyWindow(); 
 } 
 else 
 { 
  CDialog::OnSysCommand(nID, lParam); 
 } 
} 
 
 
// Author: Procerus Technologies 
// Description: If you add a minimize button to your dialog, you will  
// need the code below to draw the icon.  For MFC applications using  
// the document/view model, this is automatically done for you by the 
framework. 
void CDevDemoDlg::OnPaint()  
{ 
 if (IsIconic()) 
 { 
  CPaintDC dc(this); // device context for painting 
 

SendMessage(WM_ICONERASEBKGND, 
reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0); 

 
  // Center icon in client rectangle 
  int cxIcon = GetSystemMetrics(SM_CXICON); 
  int cyIcon = GetSystemMetrics(SM_CYICON); 
  CRect rect; 
  GetClientRect(&rect); 
  int x = (rect.Width() - cxIcon + 1) / 2; 
  int y = (rect.Height() - cyIcon + 1) / 2; 
 
  // Draw the icon 
  dc.DrawIcon(x, y, m_hIcon); 
 } 
 else 
 { 
  CDialog::OnPaint(); 
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 } 
} 
 
  
// Author: Procerus Technologies 
// Description: The system calls this function to obtain the cursor to 
// display while the user drags the minimized window. 
HCURSOR CDevDemoDlg::OnQueryDragIcon() 
{ 
 return static_cast<HCURSOR>(m_hIcon); 
} 
 
 
// Author: Procerus Technologies 
// Description: Cancel button handler. 
void CDevDemoDlg::OnBnClickedCancel() 
{ 
 ; 
} 
 
 
// Author: Procerus Technologies 
// Description: Ok button handler. 
void CDevDemoDlg::OnBnClickedOk() 
{ 
 ; 
} 
 
 
// Author: Procerus Technologies 
// Description: Exit handler. 
void CDevDemoDlg::OnExit() 
{ 
 //Close dialog 
 OnOK(); 
} 
 
 
// Author: Procerus Technologies 
// Description: Aboutbox handler. 
void CDevDemoDlg::OnAboutbox() 
{ 
 CAboutDlg dlgAbout; 
 dlgAbout.DoModal();  
} 
 
 
// Author: Procerus Technologies 
// Description: Establishes connection to the Virtual Cockpit 
// Development Interface. 
void CDevDemoDlg::OnConnect() 
{ 
 if(m_VCConnector != NULL && m_VCConnector->IsConnected() == TRUE) 
 { 
  MessageBox("Already connect to the Virtual Cockpit"); 
  return; 
 } 
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 if(m_VCConnector != NULL) 
 { 
  delete m_VCConnector;  
 } 
 
 m_VCConnector = new CSocketConnector("127.0.0.1",GetSafeHwnd()); 
 
 if(m_VCConnector->IsConnected() == FALSE) 
 { 
  MessageBox("Could not connect to the Virtual Cockpit"); 
  delete m_VCConnector; 
  m_VCConnector = NULL; 
  return; 
 } 
 
 //If we made it here we are connected 
 SetWindowText("Development Demo - Connected To Virtual Cockpit"); 
 OnAcksOnly(); //Default to VC forwarding acks only 
 ((CButton*)GetDlgItem(IDC_ACK_RADIO))->SetCheck(1); 
} 
 
 
// Author: Procerus Technologies 
// Description: Zero Pressure button handler. 
void CDevDemoDlg::OnBnClickedCmdZeroPress() 
{ 
 //Construct a zero pressure packet 
 sVCPacket ZeroPressPkt;  //Interface packet 
 sPassThrough PassPkt;  //Passthrough packet structure 
 ZeroPressPkt.VCPacketType = VC_PASSTHROUGH; 
   
 //Now make the kestrel packet according to the Kestrel 

//Communications Guide 
 PassPkt.DestAddr = m_UAVAddress; 
 PassPkt.PassData[0] = 34; //Recalibrate packet type id 
 PassPkt.PassData[1] = 0; //Recalibrate pressure sensors 
 
 //Total size of this packet data is 2 bytes + 1 short = 4 bytes 
 ZeroPressPkt.DataSize = 4; 
 
 //Copy the data over....don't exceed 1024 
 memcpy(ZeroPressPkt.PktData, &PassPkt, ZeroPressPkt.DataSize); 
 
 m_VCConnector->SendData(&ZeroPressPkt); 
 
 //Also clear the ACK text edit window 
 GetDlgItem(IDC_PRESSURE_ACK)->SetWindowText(""); 
} 
 
 
// Author: Procerus Technologies 
// Description: "All Packets" radio button handler. 
void CDevDemoDlg::OnAllPackets() 
{ 
 //Make sure we are connected 
 if(m_VCConnector == NULL) return; 
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 //Send a forward setup packet 
 sVCPacket ForwardSetup;  //Interface packet 
 ForwardSetup.VCPacketType = VC_FRWD_PKT_SETUP; 
 
 //First enable the acks packet forwarding 
 ForwardSetup.PktData[0] = 0; //All Packet Type 
 ForwardSetup.PktData[1] = 1; //Turn it on 
 
 ForwardSetup.DataSize = 2; //Always 2 for forward setup 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
} 
 
 
// Author: Procerus Technologies 
// Description: "Acknowledgments Only" radio button handler. 
void CDevDemoDlg::OnAcksOnly() 
{ 
 //Make sure we are connected 
 if(m_VCConnector == NULL) return; 
 
 //Send a forward setup packet 
 sVCPacket ForwardSetup;  //Interface packet 
 ForwardSetup.VCPacketType = VC_FRWD_PKT_SETUP; 
 
 //First enable the acks packet forwarding 
 ForwardSetup.PktData[0] = 1; //Ack Packet Type 
 ForwardSetup.PktData[1] = 1; //Turn it on 
 
 ForwardSetup.DataSize = 2; //Always 2 for forward setup 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
 
 //Now disable the std telem packet just incase they were enabled 
 ForwardSetup.PktData[0] = 249; //Std Telem Packet Type 
 ForwardSetup.PktData[1] = 0;  //Turn it off 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
 
 //Shut off the all packets flag 
 ForwardSetup.PktData[0] = 0; //The all packets flag 
 ForwardSetup.PktData[1] = 0; //Turn it off 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
} 
 
 
// Author: Procerus Technologies 
// Description: "Acks + Standard Telemetry" radio button handler. 
void CDevDemoDlg::OnAcksStd() 
{ 
 //Make sure we are connected 
 if(m_VCConnector == NULL) return; 
 
 //Send a forward setup packet 
 sVCPacket ForwardSetup;  //Interface packet 
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 ForwardSetup.VCPacketType = VC_FRWD_PKT_SETUP; 
 
 //First enable the acks packet forwarding 
 ForwardSetup.PktData[0] = 1; //Ack Packet Type 
 ForwardSetup.PktData[1] = 1; //Turn it on 
 
 ForwardSetup.DataSize = 2; //Always 2 for forward setup 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
 
 //Now set std telem packets 
 ForwardSetup.PktData[0] = 249; //Std Telem Packet Type 
 ForwardSetup.PktData[1] = 1;  //Turn it off 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
 
 //Shut off the all packets flag 
 ForwardSetup.PktData[0] = 0; //The all packets flag 
 ForwardSetup.PktData[1] = 0; //Turn it off 
 
 m_VCConnector->SendData(&ForwardSetup); //Send it to the VC 
} 
 
 
// Author: Procerus Technologies 
// Description: Process incoming VC packets. 
LRESULT CDevDemoDlg::OnVCMsg(WPARAM wParam, LPARAM lParam) 
{ 
 sVCPacket NewPkt; 
 
 //Process all the packets 
 while(m_VCConnector->NumVCPackets()) 
 { 
  NewPkt = m_VCConnector->GetNextVCPacket(); 
  ProccessVCPkt(&NewPkt); 
  m_VCConnector->PopVCPacket(); 
 } 
 
 return 0; 
} 
 
 
// Author: Procerus Technologies, modified by Stephen Schall 
// Description: Process and parse incoming VC packets for telemetry 
// and navigation data. 
void CDevDemoDlg::ProccessVCPkt(sVCPacket *NewPkt) 
{ 
 unsigned char PacketType; 
 CString EditStr1, EditStr2; 
 char CurTime[128]; 
 time_t now; 
 time(&now); 
 
 //Get the time 
 strftime(CurTime, 128, "[%H:%M:%S]", localtime(&now)); 
 
 switch(NewPkt->VCPacketType) 
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 { 
 case VC_FRWD_PKT_SETUP:  //Shouldn't happen ever 
 break; 
 //These are the raw packet values with special characters removed 
 //and checksum passed from the VC...refer to Kestrel 

//Communications Guide 
 case VC_PASSTHROUGH:   
 
  //First lets get the packet type..should be at byte offset 
1 
  PacketType = NewPkt->PktData[1]; 
 
  //Update received packet editbox 
  GetDlgItem(IDC_PACKETS_RECEVIED_EDIT)- 

>GetWindowText(EditStr1); 
  EditStr2.Format("%s Received Packet from VC Type ---  

%u\r\n",CurTime,PacketType); 
  EditStr2 += EditStr1; 
  //clear edit box if it gets too big 
  if(EditStr2.GetLength() > 16384) EditStr2.Empty();  
  GetDlgItem(IDC_PACKETS_RECEVIED_EDIT)- 

>SetWindowText(EditStr2); 
 
  //Check if this is an ack for the zero pressure 
  if(PacketType == 1 && NewPkt->PktData[6] == 34) 
  { 
   //Received ack from our zero pressure button....lets 

//set the text 
   GetDlgItem(IDC_PRESSURE_ACK)->SetWindowText("Received  

Ack");    
   return; 
  } 
 
  //Check to see if this packet is standard telemetry and  

//destined for m_UAVAddress 
  unsigned short PacketAddress; 
  memcpy(&PacketAddress,&NewPkt->PktData[2],2); 
  if(PacketAddress == m_UAVAddress && PacketType == 249) 
  { 
   //Grab out the important data 
 
   //Roll 
   short TempShort; 
   unsigned short TempUShort; 
   unsigned char TempUChar; 
   float Roll; 
   memcpy(&TempShort, &NewPkt->PktData[10],2); 
   Roll = TempShort * 57.3f / 1000.0f; //Roll in degrees 
 
   //Pitch 
   float Pitch; 
   memcpy(&TempShort, &NewPkt->PktData[12],2); 
   Pitch = TempShort * 57.3f / 1000.0f; 
 
   //Heading 
   float Heading; 
   memcpy(&TempShort, &NewPkt->PktData[14],2); 
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   Heading = TempShort * 57.3f / 1000.0f; 
   curUAVInfo.BearingUAV=Heading; 
 
   //Alt 
   float Alt; 
   memcpy(&TempUShort, &NewPkt->PktData[6],2); 
   Alt = (TempUShort / 6.0f) - 1000.0f; 
   curUAVInfo.altitudeUAV=Alt; 
 
   //Airspeed 
   float Airspeed; 
   memcpy(&TempUChar, &NewPkt->PktData[8],1); 
   Airspeed = (TempUChar / 20.0f) - 10.0f; 
   curUAVInfo.SpeedUAV=Airspeed; 
 
   //Write the values out 
   CString ValStr; 
   ValStr.Format("%.1f", Roll); 
   GetDlgItem(IDC_STD_ROLL)->SetWindowText(ValStr); 
   ValStr.Format("%.1f", Pitch); 
   GetDlgItem(IDC_STD_PITCH)->SetWindowText(ValStr); 
   ValStr.Format("%.1f", Heading); 
   GetDlgItem(IDC_STD_HEADING)->SetWindowText(ValStr); 
   ValStr.Format("%.1f", Alt); 
   GetDlgItem(IDC_STD_ALT)->SetWindowText(ValStr); 
   ValStr.Format("%.1f", Airspeed); 
   GetDlgItem(IDC_STD_AIRSPEED)->SetWindowText(ValStr); 
  } 
  //If its a navigational packet, pull out the UAV's Lat and 

//Long 
  if(PacketAddress == m_UAVAddress && PacketType == 248) 
  { 
   //Get current latitude and longitude 
   float lat2de; 
   float long2de; 
   memcpy(&lat2de, &NewPkt->PktData[14],4);   
   memcpy(&long2de, &NewPkt->PktData[20],4);  
   //Write out lat and long 
   CString str; 
   str.Format("%.7f", lat2de); 
   GetDlgItem(IDC_LAT)->SetWindowText(str); 
   str.Format("%.7f", long2de); 
   GetDlgItem(IDC_LONG)->SetWindowText(str); 
 
   //Save lat and long values for pathplanner use 
   curUAVInfo.latUAV=lat2de; 
   curUAVInfo.lonUAV=long2de; 
  } 
 break; 
 } 
} 
 
 
// Author: Stephen Schall 
// Description: "IGNITION" button handler.  This function executes 
// the path-planning operation, then packetizes the resultant flight 
// plan and sends it to the UAV via the Virtual Cockpit Development  
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// Interface (VCDI).   
void CDevDemoDlg::OnBnClickedPumpData() 
{ 
 string conLine; 
 ifstream contactFile; 
 
 //Make sure we are connected to VC 
 if(m_VCConnector == NULL)   
 { 
  AfxMessageBox("Not Connected to VC"); 
  return; 
 } 
  
 //Accept all packets to receive telemetry and navigation data 
 //from the UAV 
 OnAllPackets(); 
 
 AfxMessageBox("Searching for Sensor Network contacts"); 
 
 //Wait for a text file with contact data to appear 
 while(!contactFile.is_open()) 
 { 
  contactFile.open("contact.txt"); 
 } 
 
 //Get the first line of the contact text file 
 getline(contactFile, conLine); 
 //Close the contact file  
 contactFile.close(); 
 
 //Ask user whether they want the UAV to intercept the contact 
 //or fly to the sensor network 
 int answer; 
 bool chase=false;  
 answer = AfxMessageBox("Do you want to intercept the contact?  To 

intercept with the active UAV press yes.  To fly to and loiter  
over the instigated WSN cluster press no.  To do nothing press  
cancel.", MB_YESNOCANCEL, 0); 

 if(answer==IDYES) 
 { 
  AfxMessageBox("Intercepting the contact!"); 
  chase=true; 
 } 
 else if(answer==IDNO) 
 { 
  AfxMessageBox("Flying to the SN!"); 
 } 
 else  
 { 
  AfxMessageBox("Doing nothing!"); 
  return; 
 } 
 
 //prep the current UAV data for transfer to PathPlanner 
 float UAVIn[6]; 
 UAVIn[0]=curUAVInfo.altitudeUAV; 
 UAVIn[1]=curUAVInfo.BearingUAV; 
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 UAVIn[2]=curUAVInfo.latUAV; 
 UAVIn[3]=curUAVInfo.lonUAV; 
 UAVIn[4]=curUAVInfo.SpeedUAV; 
 
 //get UAV's turn radius (meters) 
 CString mult1; 
 float mult2; 
 GetDlgItem(IDC_MULTIPLIER)->GetWindowText(mult1); 
 mult1.TrimRight("\t "); //trim off leading and ending spaces 
 mult1.TrimLeft("\t "); 
 mult2=atof(mult1); 
 
 //get the UAV's range (nautical miles) 
 CString maxRange; 
 float mRange; 
 GetDlgItem(IDC_RANGE)->GetWindowText(maxRange); 
 maxRange.TrimRight("\t "); //trim off leading and ending spaces 
 maxRange.TrimLeft("\t "); 
 mRange=atof(maxRange); 
  
 //get UAV's max speed (meters/second) 
 CString maxSpeed; 
 float mSpeed; 
 GetDlgItem(IDC_MAX_SPEED)->GetWindowText(maxSpeed); 
 maxSpeed.TrimRight("\t "); //trim off leading and ending spaces 
 maxSpeed.TrimLeft("\t "); 
 mSpeed=atof(maxSpeed); 
 
 //Creates a file with waypoints generated by the path-planner 
 //that will be uploaded to the UAV 
 string file; 
 PathPlanner Path(conLine, chase, UAVIn, mult2, mRange, mSpeed); 
 file=Path.planner(); 
  
 //check to ensure the destination is reachable 
 if(file=="trash") 
  return; 
  
 int numCmds; //number of command position in overall flight plan 
 int totCmds; //total number of commands in a flight plan 
 string line; 
 
 //open input stream from the file containing the flight plan  
 ifstream myfile (file.c_str()); 
  
 //count number of lines (commands) in the flight plan 
 totCmds=countCommands(file); 
 numCmds=totCmds; 
 
 //get packet data from text file 
 if (myfile.is_open()) 
  { 
   //discards space at beginning of path plan 
    getline (myfile,line); 
      
   //process commands 
   while (! myfile.eof() ) 
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   { 
    //collect a line of data (one packet's worth of 

// information)   
    getline (myfile,line); 
    //Send the packet to the UAV 
    sendPacket(line, numCmds, totCmds); 
   } 
   myfile.close(); 
  } 
 //if file cant be opened 
 else  
  AfxMessageBox("unable to find file", MB_OK, 0);  
 
} 
 
 
// Author: Stephen Schall 
// Description: Parses a line (command) into the proper types and  
// variables, then sends the command to the VCDI 
void CDevDemoDlg::sendPacket(string line, int& numCmds, int totCmds) 
{ 
 char commandType1; //stores the command type 
 stringstream ss(line);  
 string buffer; 
  
 //get first string in the line (contains the command type) 
 ss >> buffer; 
 commandType1=buffer[0]; 
 
 //if the line describes a GoTo command 
 if(commandType1=='2') 
 { 
  //struct to hold packet data during collection 
  GoToPacket p; 
 
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
   
  //destination address 
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=static_cast<unsigned char>(50);  
  //command type 
  p.commandType=static_cast<unsigned char>(2);  
  //command number  
  p.commandNumber=static_cast<unsigned char>(totCmds- 

numCmds); 
  //total commands in flight plan 
  p.totalNumber=static_cast<unsigned char>(totCmds); 
  //altitude (meters * 10) 
  ss >> buffer; 
  p.altitude=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //airspeed (m/s * 2) 
  ss >> buffer; 
  p.airspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
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  //latitude (degrees) 
  ss >> buffer; 
  p.lat=atof(buffer.c_str()); 
  //longitude (degrees) 
  ss >> buffer; 
  p.lon=atof(buffer.c_str()); 
  //payload (place holder for future use) 
  ss >> buffer; 
  p.payload=static_cast<unsigned char>(atoi(buffer.c_str())); 
 
  //Copy struct into packet  
  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=sizeof(GoToPacket);  
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize);  
  //patch holes in packet from memcpy 
  for(int i=9; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  for(int i=9; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  for(int i=9; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  //send command packet to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 } 
 //if the line describes a Loiter command 
 else if(commandType1=='4') 
 { 
  //struct to hold packet data during collection 
  LoiterPacket p; 
 
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
 
  //destination address 
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=50; 
  //command type 
  p.commandType=4; 
  //command number 
  p.commandNumber=totCmds-numCmds; 
  //total number of commands in flight plan 
  p.totalNumber=totCmds; 
  //altitude (meters * 10) 
  ss >> buffer; 
  p.altitude=static_cast<unsigned short> 

(atoi(buffer.c_str()));     
  //airspeed (m/s * 2)  
  ss >> buffer; 
  p.airspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //loiter time (seconds, 0 for indefinite) 
  ss >> buffer; 
  p.loiterTime=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //loiter radius (meters) 
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  ss >> buffer; 
  p.loiterRadius=static_cast<unsigned short> 

//(atoi(buffer.c_str())); 
  //latitude (degrees) 
  ss >> buffer; 
  p.lat=static_cast<float>(atof(buffer.c_str())); 
  //longitude (degrees) 
  ss >> buffer; 
  p.lon=static_cast<float>(atof(buffer.c_str())); 
  //payload (place holder for future use) 
  ss >> buffer; 
  p.payload=static_cast<unsigned char>(atoi(buffer.c_str())); 
 
  //Copy struct to packet  
  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=sizeof(LoiterPacket); 
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize); 
  //patch holes in packet 
  for(int i=9; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  for(int i=13; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  for(int i=13; i<35; i++) 
   VCPkt.PktData[i]=VCPkt.PktData[i+1]; 
  //send command packet to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 
 } 
 //if the line describes a land command edit 
 else if(commandType1=='6') 
 { 
  //struct to hold packet data during collection 
  LandPacket p; 
   
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
 
  //UAV address  
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=53; 
  //command type 
  p.commandType=6;                        
  //command number 
  p.commandNumber=234; 
  //discarded (place holder) 
  p.totalNumber=totCmds;  
  //airspeed (m/s * 2) 
  ss >> buffer; 
  p.airspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //flair height (m/s * 2) 
  ss >> buffer; 
  p.flairHeight=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //loiter radius (meters) 
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  ss >> buffer; 
  p.loiterRadius=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //latitude (degrees) 
  ss >> buffer; 
  p.lat=static_cast<float>(atof(buffer.c_str())); 
  //longitude (degrees) 
  ss >> buffer; 
  p.lon=static_cast<float>(atof(buffer.c_str())); 
 
  //copy struct into packet 
  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=sizeof(LandPacket); 
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize); 
  //send edit command packet to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 } 
 //if the line describes a takeoff command edit 
 else if(commandType1=='7') 
 { 
  //struct to hold packet data during collection 
  TakeoffPacket p; 
 
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
 
  //UAV address  
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=50; 
  //command type 
  p.commandType=7;                        
  //command number 
  p.commandNumber=233; 
  //discarded (place holder) 
  p.totalNumber=totCmds; 
  //finish altitude (meters * 10) 
  ss >> buffer; 
  p.finAlt=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //climb out radius (meters) 
  ss >> buffer; 
  p.climbOutRadius=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //climb out airspeed (m/s * 2) 
  ss >> buffer; 
  p.climbOutAirspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //latitude (degrees) 
  ss >> buffer; 
  p.lat=static_cast<float>(atof(buffer.c_str())); 
  //longitude (degrees) 
  ss >> buffer; 
  p.lon=static_cast<float>(atof(buffer.c_str())); 
 
  //copy struct into packet  
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  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=19; 
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize); 
  //send edit command packet to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 
 } 
 //if the line describes a jump command 
 else if(commandType1=='8') 
 { 
  //struct to hold packet data during collection 
  JumpCommandPacket p; 
 
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
 
  //UAV address 
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=50; 
  //command type 
  p.commandType=8; 
  //command number 
  p.commandNumber=totCmds-numCmds; 
  //total number of commands in flight plan 
  p.totalNumber=totCmds; 
  //command number to jump to 
  ss >> buffer; 
  p.jumpToCommandNumber=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
 
  //copy struct into packet  
  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=sizeof(JumpCommandPacket); 
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize); 
  //send jump command to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 
 } 
 //if the line describes a takeoff command edit 
 else if(commandType1=='1')  
 { 
  //struct to hold packet data during collection 
  LandApproachPacket p; 
 
  //collect packet data into a struct (refer to Kestrel 
  //Autopilot System guide for details) 
 
  //UAV address 
  p.destinationAddress=m_UAVAddress; 
  //packet type 
  p.packetType=50; 
  //command type 
  p.commandType=10; 
  //command number to edit 
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  p.commandNumber=236; 
  //total number of commands in the flight plan 
  p.totalNumber=totCmds; 
  //approach airspeed (m/s * 2) 
  ss >> buffer; 
  p.approachAirspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //flair airspeed (m/s * 2) 
  ss >> buffer; 
  p.flairAirspeed=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //circle down radius (meters) 
  ss >> buffer; 
  p.circleDownRadius=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //circle descent rate (m/s * 10) 
  ss >> buffer; 
  p.circleDescentRate=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //approach altitude (meters * 10) 
  ss >> buffer; 
  p.approachAltitude=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //altitude UAV breaks out of approach loiter and follows 

// glide slope path 
  ss >> buffer; 
  p.breakoutAltitude=static_cast<unsigned short> 

(atoi(buffer.c_str())); 
  //flair height (meters * 10) 
  ss >> buffer; 
  p.flairHeight=static_cast<unsigned char> 

(atoi(buffer.c_str())); 
  //approach latitude (degrees) 
  ss >> buffer; 
  p.approachLat=static_cast<float>(atof(buffer.c_str())); 
  //approach longitude (degrees) 
  ss >> buffer; 
  p.approachLon=static_cast<float>(atof(buffer.c_str())); 
  //land latitude (degrees) 
  ss >> buffer; 
  p.landLat=static_cast<float>(atof(buffer.c_str())); 
  //land longitude (degrees) 
  ss >> buffer; 
  p.landLon=static_cast<float>(atof(buffer.c_str())); 
 
  //copy struct into packet 
  sVCPacket VCPkt; 
  VCPkt.VCPacketType=VC_PASSTHROUGH; 
  VCPkt.DataSize=sizeof(LandApproachPacket); 
  memcpy(VCPkt.PktData, &p, VCPkt.DataSize); 
  //send command edit packet to VCDI 
  m_VCConnector->SendData(&VCPkt); 
 } 
 else 
 { 
  //Received a bad command 
  AfxMessageBox("Command Invalid"); 
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 } 
 
 numCmds=numCmds-1; 
 return; 
} 
 
 
// Author: Stephen Schall 
// Description: Counts the number of commands in a flight plan  
int CDevDemoDlg::countCommands(string fileName) 
{ 
 string line1; 
 ifstream myfile1 (fileName.c_str()); 
 int count=0; 
 
 //open text file 
 if (myfile1.is_open()) 
  { 
   while (! myfile1.eof() ) 
   { 
    //count each line of data (a packet's worth of 

// data)   
    getline (myfile1,line1); 
    count=count+1; 
   } 
     
   myfile1.close(); 
  } 
   
 //subtract out the empty line at the top of the data file 
 return (count-1); 
} 
 
 
// Author: Stephen Schall 
// Description: Changes the active UAV address  
void CDevDemoDlg::OnBnClickedAddressButton() 
{ 
 //get active UAV address from user input 
 CString address; 
 GetDlgItem(IDC_ADDRESS)->GetWindowText(address); 
 address.TrimRight("\t "); //trim off leading and ending spaces 
 address.TrimLeft("\t "); 
 m_UAVAddress = atof(address);  

} 
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////////////////////////////////////////////////////////////// 
//Name: DevDemoDlg.h 
// 
//Authors: Procerus Technologies (www.procerusuav.com) and 
//         Stephen Schall 
// 
//Description: Header file for VCDI packet crafting,  
//             telemetry data acquisition, and button handlers. 
//              
/////////////////////////////////////////////////////////////// 
// Applicable to all code authored by Procerus Technologies:   
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#pragma once 
 
#include "SocketConnector.h" 
#include "afxwin.h" 
#include "PathPlanner.h" 
#include <string> 
using namespace std; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold current UAV data. 
struct UAV2 
{ 
 //current UAV latitude 
 float latUAV; 
 //current UAV longitude 
 float lonUAV; 
 //current UAV bearing (degrees) 
 float BearingUAV; 
 //current UAV velocity (m/s) 
 float SpeedUAV; 
 //current UAV altitude (meters) 
 float altitudeUAV; 
 
}; 
 
 
// Author: Procerus Technologies, modified by Stephen Schall 
// Description: CDevDemoDlg dialog. 
class CDevDemoDlg : public CDialog 
{ 
 // Construction 
 public: 
  //Standard constructor 
  CDevDemoDlg(CWnd* pParent = NULL);  
  
  //Dialog Data 
  enum { IDD = IDD_DEVDEMO_DIALOG }; 
 
 protected: 
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  // DDX/DDV support 
  virtual void DoDataExchange(CDataExchange* pDX);  
 
 // Implementation 
 protected: 
  HICON m_hIcon; 
  HICON m_hSmallIcon; 
  //Address all packets are sent to and received from 
  unsigned short  m_UAVAddress;  
  //Pointer to socket connection class 
  CSocketConnector *m_VCConnector;   
 
  //Process the packets 
  void ProccessVCPkt(sVCPacket *NewPkt);     
 
  // Generated message map functions 
  virtual BOOL OnInitDialog(); 
  afx_msg void OnSysCommand(UINT nID, LPARAM lParam); 
  afx_msg void OnPaint(); 
  afx_msg HCURSOR OnQueryDragIcon(); 
  DECLARE_MESSAGE_MAP() 
 public: 
  afx_msg void OnBnClickedCancel(); 
  afx_msg void OnBnClickedOk(); 
  afx_msg void OnExit(); 
  afx_msg void OnAboutbox(); 
  afx_msg void OnConnect(); 
  afx_msg void OnBnClickedCmdZeroPress(); 
  afx_msg void OnAllPackets(); 
  afx_msg void OnAcksOnly(); 
  afx_msg void OnAcksStd(); 
   
 
  //Function that gets called when a TCP/IP message is 

//received from the VC 
  afx_msg LRESULT OnVCMsg (WPARAM wParam, LPARAM lParam); 
 
  afx_msg void OnChangeDestAddr(); 
  afx_msg void OnBnClickedPumpData(); 
 
 public: 
  void sendPacket(string line, int& numCmds, int totCmds); 
 
 public: 
  int countCommands(string fileName); 
  
  //Holds current UAV telemetry and navigational data 
  UAV2 curUAVInfo; 

public: 
  afx_msg void OnBnClickedAddressButton(); 
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold VCDI GoTo command packet data. 
struct GoToPacket 
{ 
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  //packet destination address  
  unsigned short destinationAddress; 
  //packet type (50 for commands) 
  unsigned char packetType; 
  //command type (2 for GoTo commands) 
  unsigned char commandType;           
  //command number in the flight plan 
  unsigned char commandNumber; 
  //total number of commands in the flight plan 
  unsigned char totalNumber; 
  //altitude (meters * 10) 
  unsigned short altitude;       
  //airspeed (m/s * 2) 
  unsigned char airspeed; 
  //latitude (degrees) 
  float lat; 
  //longitude (degrees) 
  float lon; 
  //required as a place holder for future use  
  unsigned char payload; 
      
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold VCDI Loiter command packet data. 
struct LoiterPacket 
{ 
  //packet destination address  
  unsigned short destinationAddress; 
  //packet type (50 for commands) 
  unsigned char packetType; 
  //command type (4 for Loiter commands) 
  unsigned char commandType;   
  //number of the command in the flight plan 
  unsigned char commandNumber; 
  //total number of commands in the flight plan 
  unsigned char totalNumber; 
  //altitude (meters * 10) 
  unsigned short altitude; 
  //airspeed (m/s * 2) 
  unsigned char airspeed; 
  //amount of time to loiter (seconds) 
  unsigned short loiterTime; 
  //radius of loiter circle (meters) 
  unsigned short loiterRadius; 
  //latitude of loiter circle center (degrees) 
  float lat; 
  //longitude of loiter circle center (degrees) 
  float lon;  
  //included as a place holder for future use  
  unsigned char payload; 
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold VCDI Land Legal Circle command  
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// edit packet data. 
struct LandPacket 
{ 
  //packet destination address    
  unsigned short destinationAddress; 
  //packet type (53 for command edit) 
  unsigned char packetType; 
  //command type (6 for Land Legal Circle commands) 
  unsigned char commandType;           
  //command number to edit (234 for Land Legal Circle 

//commands) 
  unsigned char commandNumber; 
  //discarded, as there is only one packet in an edit  

//transmission 
  unsigned char totalNumber; 
  //airspeed of uav when landing (m/s * 2) 
  unsigned char airspeed; 
  //flair height (m/s * 2) 
  unsigned char flairHeight; 
  //radius of landing cirle loiter (meters) 
  unsigned short loiterRadius; 
  //latitude of land location (degrees) 
  float lat; 
  //longitude of land location (degrees) 
  float lon; 
     
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold VCDI Takeoff command edit 
// packet data. 
struct TakeoffPacket 
{ 
  //packet destination address  
  unsigned short destinationAddress; 
  //packet type (53 for command edit) 
  unsigned char packetType; 
  //command type (7 for Takeoff commands) 
  unsigned char commandType;           
  //command number to edit (233 for Takeoff command) 
  unsigned char commandNumber; 
  //discarded, as there is only one packet in an edit  

//transmission 
  unsigned char totalNumber; 
  //final altitude after takeoff (meters * 10) 
  unsigned short finAlt; 
  //radius of climb out circle (meters) 
  unsigned short climbOutRadius; 
  //airspeed of climb (m/s * 2) 
  unsigned char climbOutAirspeed; 
  //takeoff waypoint latitude (degrees) 
  float lat; 
  //takeoff waypoint longitude (degrees) 
  float lon; 
   
}; 
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// Author: Stephen Schall  
// Description: Data structure to hold VCDI Jump command packets. 
struct JumpCommandPacket 
{ 
  //packet destination address  
  unsigned short destinationAddress; 
  //packet type (50 for commands) 
  unsigned char packetType; 
  //command type (8 for jump commands 
  unsigned char commandType; 
  //command number in flight plan 
  unsigned char commandNumber; 
  //total number of commands in flight plan 
  unsigned char totalNumber; 
  //command number to jump to in flight plan 
  unsigned char jumpToCommandNumber; 
   
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold VCDI Land Approach command edit 
// packet data. 
struct LandApproachPacket 
{ 
  //packet destination address  
  unsigned short destinationAddress; 
  //packet type (53 for command edit) 
  unsigned char packetType; 
  //command type (10 for Takeoff commands) 
  unsigned char commandType; 
  //command number to edit (236 for Takeoff command) 
  unsigned char commandNumber; 
  //discarded, as there is only one packet in an edit 

//transmission 
  unsigned char totalNumber; 
  //approach airspeed (m/s * 2) 
  unsigned char approachAirspeed; 
  //airspeed used for flair and glide slope (m/s * 2) 
  unsigned char flairAirspeed; 
  //radius of circle used to descend (meters) 
  unsigned short circleDownRadius; 
  //airspeed of descent circle (m/s * 10) 
  unsigned char circleDescentRate; 
  //UAV altitude to approach waypoint (meters * 10)  
  unsigned short approachAltitude; 
  //altitude UAV breaks out of descent circle and into glide 

//slope (meters * 10) 
  unsigned short breakoutAltitude; 
  //flair height (meters * 10) 
  unsigned char flairHeight; 
  //approach waypoint latitude (degrees) 
  float approachLat; 
  //approach waypoint longitude (degrees) 
  float approachLon; 
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  //land waypoint latitude (degrees) 
  float landLat; 
  //land waypoint longitude (degrees) 
  float landLon;     

}; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
////////////////////////////////////////////////////////////// 
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//Name: DevDemoDlg.cpp 
// 
//Authors: Stephen Schall 
// 
//Description: This file contains the PathPlanner class, which 
//      creates a flight plan to either guide a UAV to a 
//      specific latitude and longitude (in operational 
//             support UAV-WSN System scenarios), or intercept  
//             a WSN contact (in UAV-WSN System contact  
//             interception scenarios).  The action taken is  
//             determined by the user, and the flight plan  
//             output can be viewed in "dat.txt." 
/////////////////////////////////////////////////////////////// 
 
#include "StdAfx.h" 
#include "PathPlanner.h" 
 
 
//Author: Stephen Schall 
//Description: This constructor feeds UAV and user input into the  
//PathPlanner class. 
PathPlanner::PathPlanner(string con, bool chase1, float uavIn[], float 
mult, float mRange, float mSpeed) 
{ 
 //UAV turn radius, taken from GUI (meters) 
 turnRadius=mult;  
 //UAV current latitude (degrees)  
 curLat=uavIn[2]; 
 //UAV current longitude (degrees) 
 curLon=uavIn[3]; 
 //Initiate UAV destination latitude 
 destLat=0; 
 //Initialize UAV destination longitude 
 destLon=0; 
 //UAV current bearing (degrees) 
 curBearing=uavIn[1]; 
 //Initialize UAV destination bearing 
 destBearing=0; 
 //Initialize variable to store distance to destination;  
 //may be WSN or contact intercept location 
 distance=0; 
 //Boolean value dictating whether to intercept contact or go  
 //to instigated WSN 
 follow=chase1;  
 //UAV current speed (meters/second * 2) 
 uavSpeed=uavIn[4];   
 //String containing contact data: bearing (degrees), 
 //velocity (meters/second), latitude (degrees), and 
 //longitude (degrees) 
 contct=con; 
 //UAV current altitude 
 uav1.altitudeUAV=uavIn[0]; 
 //Distance from UAV to WSN 
 distanceToSN=0; 
 //Sets the precision of latitude and longitude calculations 
 out.precision(10); 
 //UAV max range (nautical miles) 
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 maxRange=mRange;  
 //UAV max speed (meters/second) 
 maxSpeed=mSpeed; 
} 
 
 
//Author: Stephen Schall 
//Description: PathPlanner destructor. 
PathPlanner::~PathPlanner(void) 
{ 
 return; 
} 
 
 
//Author: Stephen Schall 
//Description: This is the main function driving flight plan  
//creation.  It parses WSN input, calculates the bearing to  
//the user defined destination, and creates a near-optimal 
//two dimensional path to the destination.  This flight plan 
//is then saved in "dat.txt." 
string PathPlanner::planner() 
{ 
 //Create or open text file to store flight plan 
 string file2="dat.txt"; 
 out.open(file2.c_str()); 
 
 //Get WSN input 
 in=sensorNwInput(); 
 
 //Calculate distance from UAV to WSN 
 distanceToSN=measureDistance(in.latNW, in.lonNW, curLat, curLon); 
 
 //Calculate bearing to target location 
 destBearing = getInterceptBearing(); 
  
 //Check if it is possible to reach destination 
 if(destBearing==-1) 
 { 
  AfxMessageBox("The destination is out of range");  
  return "trash"; 
 } 
  
 //Construct waypoint path to destination 
 int trash=pathDecide(0); 
 
 //Close the output file holding the flight plan 
 out.close(); 
 
 return "dat.txt"; 
} 
 
 
//Author: Stephen Schall 
//Description: Parses sensor network input from DevDemoDlg,  
//which gets its data from "contact.txt," the hypothetical  
//OTAv1 output file. 
SNInput PathPlanner::sensorNwInput(void) 
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{ 
 //Create a string stream for input 
 stringstream ss2(contct); 
 string buff; 
 SNInput input; 
 
 //Get contact's bearing (degrees) 
 ss2 >> buff; 
 input.contactBearing=atof(buff.c_str()); 
 //Get contact's velocity (meters/second) 
 ss2 >> buff; 
 input.contactSpeed=atof(buff.c_str()); 
 //Get contact's latitude (degrees) 
 ss2 >> buff; 
 input.latNW=atof(buff.c_str()); 
 //Get contact's longitude (degrees) 
 ss2 >> buff; 
 //Get contact's latitude (degrees) 
 input.lonNW=atof(buff.c_str()); 
  
 //Load contact data into PathPlanner variables 
 tarBearing=input.contactBearing;  
 tarSpeed=input.contactSpeed; 
 tarLat=input.latNW; 
 tarLon=input.lonNW; 
 
 //return contact data 
 return input; 
} 
 
 
//Author: Stephen Schall 
//Description: Computes the bearing the UAV will use 
//to reach its destination. 
float PathPlanner::getInterceptBearing() 
{ 
 //Holds UAV bearing 
 float interceptBearing; 
 //Variables used for calculation 
 double lat1, lat2, lon1, lon2, d; 
 //Get currrent UAV position  
 lat1=curLat; 
 lon1=curLon; 
 //Get WSN location 
 lat2=tarLat; 
 lon2=tarLon; 
 //Get distance from UAV to WSN 
 d=distanceToSN; 
  
 //If the user has chosen to intercept the contact with a UAV 
 if(follow) 
 {  
  //Number of points along contact's estimated path to poll 

//to see if the UAV can get there before it.  Sample size  
//accounts for 2 hours of contact movement, which is plenty  
//long considering the contact cannot be expected to 
//maintain the same exact bearing for 2 hours in most cases 
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  const int numSamples=static_cast<const int> 
((tarSpeed*3600*2)/5);  

  //Create an array of latitudes and an array of 
//coorresponding longitudes to store the contact's 
//estimated path 

  double * latSample; 
  latSample= new (nothrow) double[numSamples]; 
  double * lonSample; 
  lonSample= new (nothrow) double[numSamples]; 
  //Start contact estimated path at site of detection (WSN 

//location) 
  latSample[0]=lat2; 
  lonSample[0]=lon2; 
  //Stores whether or not the contact is possible to 

//intercept the contact 
  bool interceptPossible=false;  
  //Polls the estimated contact path every 5 meters; must be 
  //converted from meters to nm for calculations 
  double interval=5.0*.000539956803;   
  //Get time in seconds it takes contact to arrive at each  

//possible intercept point  
  double time= (interval/.000539956803)/tarSpeed;  
  //Total time past in seconds 
  double timePast=0; 
  //Used to account for the amount of time it takes the UAV 

//to turn to the bearing of the potential interception 
//point 

  float timeAddedForTurn=0; 
  double intervalAdder=0; 
  //Do a simple test to see if the UAV can ever catch the 

//contact 
  interceptPossible=possible(lat1, lon1, lat2, lon2, 

tarBearing);  
 
  //If it may be possible to intercept the contact 
  if(interceptPossible) 
  { 
   //Poll ever 5 meters along the contact's estimated 
   //path to see where the UAV can intercept it 
   for(int i=0; i<numSamples; i++) 
   { 
    //Generate possible intercept locations 
    intervalAdder=interval+intervalAdder; 
    nextPoint(lat2, lon2, tarBearing, 

intervalAdder, latSample[i+1], lonSample[i+1]);   
    //Test to see if UAV can make it to intercept 

//location in time to meet contact 
    interceptPossible=test(timePast, 

latSample[i+1], lonSample[i+1]); 
 
    //If an achievable intercept is found, return 

//the bearing to it and update the destination 
    if(interceptPossible) 
    { 
     //Update destination to initial intercept 

//location 
     destLat=latSample[i+1]; 
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     destLon=lonSample[i+1]; 
     //Measure distance to initial intercept 

//location 
     distance=measureDistance(lat1, lon1, 

latSample[i+1], lonSample[i+1]); 
     //Get the initial intercept bearing to 

//intercept location 
     interceptBearing=getBearing(lat1, lon1, 

latSample[i+1], lonSample[i+1]); 
     //Account for the time it would take the 

//UAV to turn to the bearing of the  
     //potential interception point 
            
     timeAddedForTurn=addTimeForTurn 

(interceptBearing);  
double distanceChange= 
timeAddedForTurn*tarSpeed; 

     //Convert from meters to nautical miles 
    distanceChange= 

distanceChange*.000539956803; 
     //If correction must be made to account 

//for turn time 
     if(distanceChange>0) 
     { 
      //Generate new intercept location 
      nextPoint(latSample[i], 

lonSample[i], tarBearing, 
distanceChange, latSample[i+2], 
lonSample[i+2]);   

 
      //Once extra time is accounted for, 

//get correct values 
      destLat=latSample[i+2]; 
      destLon=lonSample[i+2]; 
      distance=measureDistance(lat1, 

lon1, latSample[i+2], 
lonSample[i+2]); 

 interceptBearing=getBearing(lat1, 
lon1, latSample[i+2], 
lonSample[i+2]); 

      //Ensure the contact can still be 
//intercepted if turn required  

  
nextPoint(lat1, lon1, tarBearing, 
distanceChange, lat2, lon2); 

  
interceptPossible=possible(lat1, 
lon1, lat2, lon2, 
interceptBearing); 

      if(!interceptPossible) 
       return -1; 
     } 
     return interceptBearing; 
    } 
    //Add time it took contact to get to next poll 

//point along its estimated path 
    timePast=time + timePast; 
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   } 
   //If the contact cannot be intercepted with the UAV 
   interceptBearing=-1; 
  } 
  //If the contact cannot be intercepted with the UAV 
  else 
  { 
   interceptBearing=-1; 
  } 
 } 
 //If the user selected to send a UAV to the instigated WSN 
 else 
 { 
  //Check to ensure the sensor network is reachable 
  if(distanceToSN>=maxRange) 
  { 
   interceptBearing=-1; 
   return interceptBearing; 
  } 
  
  //Get bearing to WSN 
  interceptBearing=getBearing(lat1, lon1, lat2, lon2); 
 
  //Solidify destination 
  distance=distanceToSN; 
  destLat=tarLat; 
  destLon=tarLon; 
 } 
 return interceptBearing; 
} 
 
 
//Author: Stephen Schall 
//Description: Returns distance in nm between two points.  Equation 
//from (Williams, 2004), (http://williams.best.vwh.net/avform) 
double PathPlanner::measureDistance(double lat1, double lon1, double 
lat2, double lon2) 
{ 
 //Variable to hold distance between the points 
 double dist; 
 
 //Convert latitudes and longitudes to radian distances  
 lat1=lat1*3.14159265/180.0; 
 lat2=lat2*3.14159265/180.0; 
 lon1=lon1*3.14159265/180.0; 
 lon2=lon2*3.14159265/180.0; 
 
 //Haversine formula 

dist=2*asin(sqrt(pow((sin((lat1-lat2)/2.0)),2.0) + 
cos(lat1)*cos(lat2)*(pow((sin((lon1-lon2)/2.0)),2.0)))); 

 //Convert distance from radians to nm 
 dist=((180.0*60.0)/3.14159265)*dist; 
 
 return dist;  
} 
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//Author: Stephen Schall 
//Description: Creates a flight plan to the UAV destination.  
Determines 
//whether to turn the UAV or not based on its bearing and its 
destination. 
//Returns a 1 if a turn is required, and 0 if not 
int PathPlanner::pathDecide(int type) 
{ 
  
 //Holds the returned value of makeTurn() 
 int trash; 
 //Holds whether the destination is straight ahead or not 
 bool straightAhed=straightAhead(); 
  
 
 //If UAV bearing is toward quadrant I  
 if(curBearing>=0 && curBearing<90) 
 { 
  //Check if turn greater than 45 degrees is required 

if(destBearing<=curBearing+45 || destBearing>=(360-(45-
curBearing))) 

  { 
   //Turn greater than 45 degrees not required; 

//If distance from current location to destination 
//location is less than twice the turning radius, go 
//forward before turning, unless destination is 
//straight ahead  
if((distance<=((2*turnRadius)/1852.0)) && 
(!straightAhed)) 

   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
    //Turn required 
    return 1; 
   } 

//Turn less than 45 degrees; distance to destination 
//greater than two times the turn radius of the UAV 

   else 
   { 
    //If not for interception calculation 
    if(type==0) 
    { 
     //Make Goto point packet 
     makeGotoFlyStraight(); 
    } 
   } 
  }  
  //Destination bearing requires harder than 45 degree turn 
  else  
  { 
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//If distance from current location to destination 
//location is less than twice the turning radius 

   if(distance<=((2*turnRadius)/1852.0)) 
   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
   } 
   else  
   { 
    //If not for interception calculation 
    if(type==0) 
    { 
     trash=makeTurn(0); 
    } 
   } 
   //Turn required 
   return 1; 
  } 
 } 
 //If UAV bearing is toward quadrants III or IV  
 else if(curBearing>=90 && curBearing<270) 
 { 
  //Check if turn greater than 45 degrees is required 

if(destBearing>=(curBearing-45) && 
destBearing<=(curBearing+45)) 

  { 
   //Turn greater than 45 degrees not required; 

//If distance from current location to destination 
//location is less than twice the turning radius, go 
//forward before turning, unless destination is 
//straight ahead  
if(distance<=((2*turnRadius)/1852.0) && 
(!straightAhed)) 

   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
    //Turn required 
    return 1; 
   } 

//Turn less than 45 degrees; distance to destination 
//greater than two times the turn radius of the UAV 

   else 
   { 
    //If not for interception calculation 
    if(type==0) 
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    { 
     //Make Goto point packet 
     makeGotoFlyStraight(); 
    } 
   } 
  } 
  //Destination bearing requires harder than 45 degree turn 
  else 
  { 

//If distance from current location to destination 
//location is less than twice the turning radius 

   if(distance<=((2*turnRadius)/1852.0)) 
   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
   } 
   else  
   { 
    //If not for interception calculation 
    if(type==0) 
    { 
     trash=makeTurn(0); 
    } 
   } 
   //Turn required 
   return 1; 
  } 
 } 
 //If UAV bearing is toward quadrant II 
 else if(curBearing>=270 && curBearing<360) 
 { 
  //Check if turn greater than 45 degrees is required 

if(destBearing>=(curBearing-45) || destBearing<=(45-(360-
curBearing))) 

  { 
   //Turn greater than 45 degrees not required; 

//If distance from current location to destination 
//location is less than twice the turning radius, go 
//forward before turning, unless destination is 
//straight ahead  
if(distance<=((2*turnRadius)/1852.0) && 
(!straightAhed)) 

   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
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    //Turn required 
    return 1; 
   } 

//Turn less than 45 degrees; distance to destination 
//greater 

   //than two times the turn radius of the UAV 
   else 
   { 
    //If not for interception calculation 
    if(type==0) 
    { 
     //Send Goto point packet 
     makeGotoFlyStraight(); 
    } 
   } 
  } 
  //Destination bearing requires harder than 45 degree turn 
  else 
  { 

//If distance from current location to destination 
//location is less than twice the turning radius 

   if(distance<=((2*turnRadius)/1852.0)) 
   { 
    //If not for interception calculation 
    if(type==0) 
    { 

//Set goto point in front, then turn 
//around after moving forward 

     makeGotoBeforeTurn(); 
     trash=makeTurn(0); 
    } 
   } 
   else  
   { 
    //If not for interception calculation 
    if(type==0) 
    {    
     trash=makeTurn(0); 
    } 
   }  
   //Turn required 
   return 1; 
  } 
 } 
 else 
  AfxMessageBox("ERROR computing path"); 
 
 return 0; 
} 
 
 
//Author: Stephen Schall 
//Description: Makes a Loiter packet that flies the UAV "forward."  
//Where "forward" in this case means that the UAV does not need to turn 
//harder than 45 degrees to get to its destination.  Once at its 
//destination, the UAV will circle overhead indefinitely until ordered 
//to do otherwise. 
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void PathPlanner::makeGotoFlyStraight(void) 
{ 
 //Write Loiter command to flight plan 

out<<"\n4 1200 "<<maxSpeed*2<<" 0 "<<turnRadius<<" "<<destLat<<" 
"<<destLon<<" 0";  

} 
 
 
//Author: Stephen Schall 
//Description: Sends UAV four times its turn radius ahead to be able to 
//turn for a destination that was within two times its turn radius from 
//its current position.  Equation from (Williams, 2004), 
//(http://williams.best.vwh.net/avform). 
void PathPlanner::makeGotoBeforeTurn() 
{ 
 //Variable declarations 
 float interceptBearing, tc; 
 float lat1, lat2, lon1, lon2, d; 
 lat1=curLat; 
 lon1=curLon; 
 tc=curBearing; 
 //Distance to travel ahead in nm  
 d=(4*turnRadius)/1852.0; 
 
 //Convert variables to radians 
 tc=(3.14159265/180.0)*tc; 
 d=(3.14159265/(180.0*60.0405))*d; 
 lat1=lat1*3.14159265/180.0; 
 lon1=-lon1*3.14159265/180.0; 
  

//Produces a new latitude and longitude given an original 
//position, a distance traveled and a bearing  

 lat2=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc)); 
      if(cos(lat2)==0) 
        lon2=lon1;       
 else 

lon2=fmod(lon1-asin(sin(tc)*sin(d)/cos(lat2)) 
+3.14159265,2*3.14159265)-3.14159265; 

      
 //Convert back to degrees 
 lat2=((lat2*180.0)/3.14159265);  
 lon2=-((lon2*180.0)/3.14159265);  
 
 //Write waypoint to flight plan 
 out<<"\n2 1200 "<<maxSpeed*2<<" "<<lat2<<" "<<lon2<<" 0"; 
  
 //Update UAV current position 
 curLat=lat2; 
 curLon=lon2; 
} 
 
 
//Author: Stephen Schall 
//Description: Handles any situation in which the UAV must turn  
//harder than 90 degrees.  Variable type used to distinguish between 
//write operation and intercept calculation calls. 
int PathPlanner::makeTurn(int type) 
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{ 
 //Direction of turn 
 bool flyRightCircle; 
 //Holds the eight points representing the UAV turn circle 
 double la[8]; 
 double lo[8]; 
 //Start turn with current position 
 la[0]=curLat; 
 lo[0]=curLon; 
 //Make a 45 degree turn at each of the eight points  
 //around the circle 
 int turnAngle=45; 
 //Keeps track of true bearing 
 float trackAngle=0; 
 //Used to know which point is the breakoff tangent 
 bool breakOff=false; 
 //Number of turns till breakoff 
 int turnCount=0; 
 
 //Determine whether to turn right or left to get to destination 
 if(curBearing>=0 && curBearing<=180) 
 { 

if(destBearing < curBearing || destBearing >= 
(curBearing+180)) 

   flyRightCircle=false; 
  else 
   flyRightCircle=true; 
 } 
 else 
 { 

if(destBearing > curBearing || destBearing <= 
((curBearing+180)-360)) 

   flyRightCircle=true; 
  else 
   flyRightCircle=false; 
 } 
 
 //If turning right 
 if(flyRightCircle) 
 { 
  //Retrieve current UAV true bearing 
  trackAngle=curBearing; 
  //Construct right turn circle 
  for(int i=0; i<7; i++) 
  { 
   //Get true bearing for next turn around the circle 
   if(trackAngle+turnAngle<=360) 
    trackAngle=trackAngle+turnAngle; 
   else 
    trackAngle=trackAngle+turnAngle-360; 
     

//Get next point in the turn circle, radius of circle 
//is UAV turn radius.  Distance of each leg is 
//dependent upon UAV turn radius as well. 
nextPoint(la[i], lo[i], trackAngle, 
(((turnRadius)/1852.0)*sin(22.5*(3.14159265/180.0))), 
la[i+1], lo[i+1]); 
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   //Determine if this is the breakOff spot 

breakOff=poll(la[i+1], lo[i+1], trackAngle, 
flyRightCircle); 

 
//Write turn waypoints until the breakoff spot is 
//found and written 

   if(!breakOff) 
   { 

//Add to turn count because UAV is still 
//turning  

    turnCount++; 
    //If not an intercept calculation call 
    if(type==0) 
    { 

//Write a Goto command for 1/8 of the 
//turn circle 
out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<la[i+1]<<" "<<lo[i+1]<<" 0"; 

     
     //Update current location 
     curLat=la[i+1]; 
     curLon=lo[i+1]; 
    } 
   } 
   //If turn breakOff location found 
   else 
   { 
    //Still need to make the last turn 
    turnCount++; 
    //If not an intercept calculation call 
    if(type==0) 
    { 
     //Write last point of the turn 

out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<la[i+1]<<" "<<lo[i+1]<<" 0"; 

     
//Fly to a point in between breakoff 
//point and destination 

     float ptLat, ptLon; 
intermediatPt(la[i+1], lo[i+1], destLat, 
destLon, ptLat, ptLon); 
out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<ptLat<<" "<<ptLon<<" 0"; 

 
     //Fly to destination 
     makeGotoFlyStraight(); 
     return 0; 
    } 
    //Return the magnitude of the turn 
    return turnCount; 
   }  
  } 
 } 
 //If turning left 
 else 
 { 
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  //Retrieve current UAV true bearing 
  trackAngle=curBearing; 
  
  //Construct left circle 
  for(int i=0; i<7; i++) 
  { 
 
   //Get true bearing for next turn around the circle 
   if(trackAngle-turnAngle >= 0) 
    trackAngle=trackAngle-turnAngle; 
   else 
    trackAngle=(360+(trackAngle-turnAngle)); 
 

//Get next point in the turn circle, radius of circle 
//is UAV turn radius. Distance of each leg is 
//dependent upon UAV turn radius as well (fourth 
//parameter) 
nextPoint(la[i], lo[i], trackAngle, 
(((turnRadius)/1852.0)*sin(22.5*(3.14159265/180.0))), 
la[i+1], lo[i+1]); 

 
   //Determine if this is the breakOff spot 

breakOff=poll(la[i+1], lo[i+1], trackAngle, 
flyRightCircle); 

    
//Write turn waypoints until the breakoff spot is 
found and written 

   if(!breakOff) 
   { 

//Add to turn count because UAV is still 
//turning  

    turnCount++; 
    //If not an intercept calculation call 
    if(type==0) 
    { 

//Write a Goto command for 1/8 of the 
//turn circle 
out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<la[i+1]<<" "<<lo[i+1]<<" 0"; 

     //Update current UAV position 
     curLat=la[i+1]; 
     curLon=lo[i+1]; 
    } 
   } 
   //If turn breakOff location found 
   else 
   { 
    //Account for last point of turn 
    turnCount++; 
    //If not an interception calculation call 
    if(type==0) 
    { 
     //Write last point of turn 

out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<la[i+1]<<" "<<lo[i+1]<<" 0"; 
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//Fly to a point in between breakoff 
//point and destination 

     float ptLat, ptLon; 
intermediatPt(la[i+1], lo[i+1], destLat, 
destLon, ptLat, ptLon); 
out<<"\n2 1200 "<<maxSpeed*2<<" 
"<<ptLat<<" "<<ptLon<<" 0"; 

 
     //Fly to destination 
     makeGotoFlyStraight(); 
     return 0; 
    } 

//Used to count the number of turns required to 
//face a bearing 

    return turnCount; 
   } 
  } 
 } 
} 
 
 
//Author: Stephen Schall 
//Description: Computes a new latitude and longitude, a distance "d" 
//away from the inputted location, at a specified true bearing.  
//Equation from (Williams, 2004), (http://williams.best.vwh.net/avform) 
void PathPlanner::nextPoint(double lat1, double lon1, double bearing, 
double d, double& lat2, double& lon2) 
{ 
 //Transfer bearing for ease of use 
 double b=bearing; 
 
 //Convert variables to radians 
 b=(3.14159265/180.0)*b; 
 d=(3.14159265/(180.0*60.0405))*d; 
 lat1=lat1*3.14159265/180.0; 

//Made negative because this equation treats West coordinates as 
//positive 

 lon1=-lon1*3.14159265/180.0;   
  
 //Compute new latitude and longitude  
 lat2=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(b)); 
    if(cos(lat2)==0) 
        lon2=lon1;       
  else 

lon2=fmod(lon1-asin(sin(b)*sin(d)/cos(lat2)) 
+3.14159265,2*3.14159265)-3.14159265; 

 
 //Convert back to degrees 
 lat2=((lat2*180)/3.14159265);  
 lon2=-((lon2*180)/3.14159265);  
} 
 
 
//Author: Stephen Schall 
//Description: Decides whether or not to break off of the turning 
//circle and proceed to the destination. 
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bool PathPlanner::poll(float lati, float longi, float beari, bool 
turnRight) 
{ 
 //Holds a true value if the breakoff tangent has been found 
 bool breakOff1=false; 
 float newBearing; 
 //Transfer variables for ease of use 
 float lat1=lati; 
 float lat2=destLat; 
 float lon1=longi; 
 float lon2=destLon; 
 float angleWidth=45.0; 
 

//Get new bearing to destination based on location around turning 
//circle 

 newBearing=getBearing(lat1, lon1, lat2, lon2); 
  
 //If the turn is to the left 
 if(!turnRight) 
 { 

//If the current heading around the turn is less than or 
//equal to 45 degrees true 

  if(beari<=angleWidth) 
  {  

//Checks to see if destination is within 45 degrees 
//to the left of the current heading 
if(newBearing<=beari || newBearing >= (360.0-
(angleWidth-beari))) 

    breakOff1=true; 
   else 
    breakOff1=false; 
  }  

//If the current heading around the turn is greater than 45 
//degrees true 

  else  
  { 

//Checks to see if destination is within 45 degrees 
//to the left of the current heading 
if(newBearing>=beari-angleWidth && newBearing <= 
beari) 

    breakOff1=true; 
   else 
    breakOff1=false; 
  } 
 } 
 //If the turn is to the right 
 if(turnRight) 
 { 

//If the current heading around the turn is less than 315 
//degrees true 

  if(beari<360.0-angleWidth) 
  {  

//Checks to see if destination is within 45 degrees 
//to the right of the current heading 
if(newBearing>=beari && newBearing <= beari + 
angleWidth) 

    breakOff1=true; 
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   else 
    breakOff1=false; 
  }  

//If the current heading around the turn is greater than 
//315 degrees true 

  else  
  { 

//Checks to see if destination is within 45 degrees 
//to the right of the current heading 
if(newBearing>=beari || newBearing<= 
((beari+angleWidth)-360.0)) 

    breakOff1=true; 
   else 
    breakOff1=false; 
  } 
 } 
 //Return whether or not to break off of turn circle 
 return breakOff1; 
} 
 
 
//Author: Stephen Schall 
//Description: Finds a latitude and longitude that are in between  
//two given coordinates.  Equation from (Williams, 2004),  
//(http://williams.best.vwh.net/avform) 
void PathPlanner::intermediatPt(float lat1, float lon1, float lat2, 
float lon2, float& intPtLat, float& intPtLon) 
{ 
 //Create variables to be used in calculation 
 float A, B, x, y, z, d; 
 //Get the distance between the inputted points 
 d=measureDistance(lat1, lon1, lat2, lon2); 
 
 //Convert variables to radian distances  
 lat1=lat1*3.14159265/180.0; 
 lat2=lat2*3.14159265/180.0; 
 lon1=-lon1*3.14159265/180.0; 
 lon2=-lon2*3.14159265/180.0; 
 d=(3.14159265/(180.0*60.0405))*d; 
  
 //Conduct calculation to find median latitude and longitude 
 A=sin((1-0.5)*d)/sin(d); 
 B=sin(0.5*d)/sin(d); 
 x = A*cos(lat1)*cos(lon1) + B*cos(lat2)*cos(lon2); 
 y = A*cos(lat1)*sin(lon1) + B*cos(lat2)*sin(lon2); 
 z = A*sin(lat1) + B*sin(lat2); 
 intPtLat=atan2(z,sqrt((x*x)+(y*y))); 
 intPtLon=atan2(y,x); 
 
 //Convert latitude and longitude to degrees 
 intPtLat = ((intPtLat*180.0)/3.14159265);  
 intPtLon = -((intPtLon*180.0)/3.14159265); 
 
 return; 
} 
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//Author: Stephen Schall 
//Description: PathPlanner basic constructor. 
PathPlanner::PathPlanner(void) 
{ 
 return; 
} 
 
 
//Author: Stephen Schall 
//Description: Checks whether the UAV could beat the WSN 
//contact to a point along the contact's estimated path. 
bool PathPlanner::test(float time, float lat2, float lon2) 
{ 
 //Get the distance from the UAV to the point 
 float d=measureDistance(curLat, curLon, lat2, lon2); 
 //Time it would take the UAV to get to the location 
 float timeToIntercept=((d/.000539956803)/maxSpeed); 
 //Compare the UAV's time with the contact's time 
 if(timeToIntercept<=time) 
  return true; 
 else 
  return false; 
} 
 
 
//Author: Stephen Schall 
//Description: Checks whether interception of a contact is possible 
//before entering into an exhaustive search to find it. 
bool PathPlanner::possible(float lat1, float lon1, float lat2, float 
lon2, float contactBear) 
{ 
 //If the contact is moving away from the UAV in X and Y 
 bool movingAway; 
 
 //If contact is to the N of the UAV 
 if(lon1==lon2 && lat1<lat2) 
 { 
  //If contact is traveling N 
  if(contactBear>=270 || contactBear<=90) 
   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the NE of the UAV 
 else if(lon1<lon2 && lat1<lat2) 
 { 
  //If contact is traveling NE 
  if((contactBear<=90 && contactBear>=0) || contactBear==360) 
   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the E of the UAV 
 else if(lon1<lon2 && lat1==lat2) 
 { 
  //If contact is traveling E 
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if((contactBear<=180 && contactBear>=0) || 
contactBear==360) 

   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the SE of the UAV 
 else if(lon1<lon2 && lat1>lat2) 
 { 
  //If contact is traveling SE 
  if(contactBear<=180 && contactBear>=90) 
   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the S of the UAV 
 else if(lon1==lon2 && lat1>lat2) 
 { 
  //If contact is traveling S 
  if(contactBear<=270 && contactBear>=90) 
   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the SW of the UAV 
 else if(lon1>lon2 && lat1>lat2) 
 { 
  //If contact is traveling SW 
  if(contactBear<=270 && contactBear>=180) 
   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the W of the UAV 
 else if(lon1>lon2 && lat1==lat2) 
 { 
  //If contact is traveling W 

if((contactBear<=360 && contactBear>=180) || 
contactBear==0) 

   movingAway=true; 
  else 
   movingAway=false; 
 } 
 //If contact is to the NW of the UAV 
 else if(lon1>lon2 && lat1<lat2) 
 { 
  //If contact is traveling NW 

if((contactBear<=360 && contactBear>=270) || 
contactBear==0) 

   movingAway=true; 
  else 
   movingAway=false; 
 } 
 
 
 //Check if contact is going as fast or faster than the max speed  
 //of the UAV, and moving away 
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 if(maxSpeed<=tarSpeed && movingAway) 
 { 
  return false; 
 } 
 //Check if the contact will remain out of range of the UAV, 
 //even if UAV is moving faster 
 else if(movingAway && (distanceToSN>=maxRange)) 
 { 
  return false; 
 } 
 else 
  return true; 
} 
 
 
//Author: Stephen Schall 
//Description: Returns the bearing between two given points (Geographic  
//coordinates).  Equation from (Movable Type Scripts, 2006),   
//(http://www.movable-type.co.uk/scripts/LatLong.html) 
float PathPlanner::getBearing(float lat1, float lon1, float lat2, float 
lon2) 
{ 
 //True bearing from point 1 to point 2 
 float newBearing; 
 
 //Get distance between the points 
 float d=measureDistance(lat2, lon2, lat1, lon1); 
  
 //Convert variables to radians 
 d=(3.14159265/(180.0*60.0405))*d; 
 lat1=lat1*3.14159265/180.0; 
 lat2=lat2*3.14159265/180.0; 
 lon1=lon1*3.14159265/180.0; 
 lon2=lon2*3.14159265/180.0; 
 
 //Get true bearing  

newBearing=atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)-
sin(lat1)*cos(lat2)*cos(lon2-lon1)); 

 
 //Convert bearing to degrees 
 newBearing=(180/3.14159265)*newBearing; 
 
 //Convert negative bearings to positive 
 if(newBearing<0) 
  newBearing=360+newBearing; 
 
 return newBearing; 
} 
 
 
//Author: Stephen Schall 
//Description: Determines the amount of time the UAV 
//will take to turn before it can proceed on an intercept 
//path with a WSN contact 
float PathPlanner::addTimeForTurn(float interceptBearing) 
{ 
 //Turn time required 
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 float timeAdded=0; 
 //Holds a 1 if a turn is required, 0 otherwise 
 int turnYesOrNo; 
 //Number of steps around turn circle UAV must make, 
 //where 8 is a full circle 
 int numTurns=0; 
 
 //Get bearing to intercept 
 destBearing=interceptBearing; 
 
 //If a turn is required, will return a 1 
 turnYesOrNo=pathDecide(1); 
 //Check if a turn is required 
 if (turnYesOrNo==1) 
 { 
  numTurns=makeTurn(1); 
 } 
 //Compute amount of time required for turn 
 timeAdded=((3.14159265*turnRadius*2.0)/maxSpeed)*(numTurns/8.0); 
 return timeAdded; 
} 
 
 
//Author: Stephen Schall 
//Description: Determines if the contact is within a 10 degree sector  
//directly in front of the UAV's current bearing. 
bool PathPlanner::straightAhead(void) 
{ 
 //Current bearing  
 float curHolder; 
 //Destination bearing 
 float destHolder; 
 
 //Checks whether or not the bearings must be moved for 
 //this computation 
 if(curBearing>=5.0 && curBearing<=355.0) 
 { 

//If destination is within a 5 degrees to the left or right 
//of the UAV's current bearing 
if(curBearing+5.0>=destBearing && curBearing-
5.0<=destBearing) 

   return true; 
  else 
   return false; 
 } 
 else 
 { 

//Moves current bearing out of contentious range by adding 
//100 degrees  

  curHolder=(fmod((curBearing+100.0),360.0)*360.0); 
//Moves destination bearing out of contentious range by 
//adding 100 degrees 

  destHolder=(fmod((destBearing+100.0),360.0)*360.0); 
   

//If destination is within a 5 degrees to the left or right 
//of the UAV's current bearing 

  if(curHolder+5.0>=destHolder && curHolder-5.0<=destHolder) 
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   return true; 
  else 
   return false;   
 } 
 return false; 
} 
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////////////////////////////////////////////////////////////// 
//Name: PathPlanner.h 
// 
//Authors: Stephen Schall 
// 
//Description: Header file for flight plan construction within 
//PathPlanner.cpp.            
/////////////////////////////////////////////////////////////// 
 
#pragma once 
 
#include "DevDemo.h" 
#include <fstream> 
#include <sstream> 
#include <math.h> 
 
using namespace std; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold current UAV data. 
struct UAV 
{ 
 //UAV position (degrees) 
 float latUAV; 
 float lonUAV; 
 //UAV current heading (degrees) 
 float BearingUAV; 
 //UAV speed (m/s) 
 float SpeedUAV; 
 //UAV altitude (m) 
 float altitudeUAV; 
}; 
 
 
// Author: Stephen Schall  
// Description: Data structure to hold WSN PCPTAv1 input. 
struct SNInput 
{ 
 //Position of WSN cluster reporting intrusion (degrees) 
 float latNW;           
 float lonNW;   
 //Contact true heading (degrees) 
 float contactBearing; 
 //Contact velocity (m/s) 
 float contactSpeed; 
}; 
 
 
// Author: Stephen Schall  
// Description: The class that handles UAV flight plan production 
// and two-dimensional path optimization. 
class PathPlanner 
{ 
 public: 
  //UAV turn radius 
  float turnRadius; 
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//Assists with tuning maneuverability to different 
//platforms 

  float multiplier; 
  //UAV current position 
  float curLat; 
  float curLon; 
  //Destination coordinate variables 
  float destLat; 
  float destLon; 
  //Current UAV true bearing 
  float curBearing; 
  //True bearing to destination 
  float destBearing; 
  //Distance to destination 
  double distance;      
  //Distance to instigating WSN cluster  
  double distanceToSN;  

//Tells program whether to follow or to loiter around 
//sensor 

  //network coordinates 
  bool follow;          
  //UAV current speed  
  float uavSpeed; 
  //WSN contact velocity 
  float tarSpeed; 
  //WSN contact true heading 
  float tarBearing; 
  //WSN cluster location 
  float tarLat; 
  float tarLon; 
  //Holds WSN PCPTAv1 input text 
  string contct; 
  //Holds UAV data 
  UAV uav1; 
  //Stream for text parsing 
  ofstream out; 
  //UAV's max range in nm 
  float maxRange;  
  //UAV's max speed in m/s 
  float maxSpeed;  
  //WSN PCPTAv1 input 
  SNInput in; 
 
  //PathPlanner Class function declarations 

PathPlanner(string con, bool chase1, float uavIn[], float 
mult, float mRange, float mSpeed); 

  ~PathPlanner(void); 
  string planner(); 
  void makeGotoBeforeTurn(); 
  int makeTurn(int type); 
  SNInput sensorNwInput(void); 
  float getInterceptBearing(); 

double measureDistance(double lat1, double lon1, double 
lat2, double lon2); 

  int pathDecide(int type); 
  void makeGotoFlyStraight(void); 
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void nextPoint(double lat1, double lon1, double bearing, 
double d, double& lat2, double& lon2); 
bool poll(float lati, float longi, float beari, bool 
turnRight); 
void intermediatPt(float lat1, float lon1, float lat2, 
float lon2, float& intPtLat, float& intPtLon); 

  PathPlanner(void); 
  bool test(float time, float lat2, float lon2); 

bool possible(float lat1, float lon1, float lat2, float 
lon2, float contactBear); 
float getBearing(float lat1, float lon1, float lat2, float 
lon2); 

  float addTimeForTurn(float interceptBearing); 
  bool straightAhead(void); 
}; 
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////////////////////////////////////////////////////////////// 
//Name: SocketConnector.cpp 
// 
//Author: Procerus Technologies (http://www.procerusuav.com/)  
// 
//Description: Creates socket connections from PCPTAv1 to the  
//VCDI, which passes command packets to the Kestrel Autopilot 
//via VC  
/////////////////////////////////////////////////////////////// 
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#include "stdafx.h" 
#include "SocketConnector.h" 
 
using namespace std; 
CSocketConnector::CSocketConnector(const CString ipAddress, HWND 
MainHwnd) 
{ 

//All we want to do is connect to the Dev Server created by 
//Virtual Cockpit 

 m_VCServerConnected = FALSE; 
 m_DataThreadRunning = FALSE; 
 m_VCSocket = INVALID_SOCKET; 
 m_MainHwnd = MainHwnd; 
 
 //Try to connect to the VC 
 if (WSAStartup( MAKEWORD(1,1), &m_wsaData ) == NO_ERROR) 
 { 
  m_VCSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 
 
  if (m_VCSocket != INVALID_SOCKET) 
  { 
   // Connect to the data server. 
   clientService.sin_family = AF_INET; 
   clientService.sin_addr.s_addr = inet_addr(ipAddress); 
   //default VC listening port number 
   clientService.sin_port = htons(5005);  

if (connect(m_VCSocket, (SOCKADDR*) &clientService, 
sizeof(clientService)) != SOCKET_ERROR) 

   { 
    m_VCServerConnected = TRUE; 
    AfxBeginThread(StartReadThread, this); 
    m_DataThreadRunning = TRUE; 
   } 
  } 
 } 
} 
 
 
CSocketConnector::~CSocketConnector() 
{ 
 m_VCServerConnected = FALSE; 
 //AfxMessageBox("Made False 4"); 
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 //Close the socket 
 if (m_VCSocket != INVALID_SOCKET) 
  closesocket(m_VCSocket); 
 
 //Wait Until the ReadThread stops 
 while (m_DataThreadRunning) 
  Sleep(50); 
 
 //Clear out the Comm packets 
 while(NumVCPackets() > 0) 
  PopVCPacket(); 
 
 //Clean up the driver 
 WSACleanup(); 
} 
 
 
UINT CSocketConnector::StartReadThread(LPVOID pParam) 
{ 
 CSocketConnector *pConnector = (CSocketConnector *)pParam; 
 
 while (pConnector->IsConnected()) 
  pConnector->ReadData(); 
 
 pConnector->m_DataThreadRunning = FALSE; 
 
 return 0; 
} 
 
 
void CSocketConnector::ReadData() 
{ 
 //We should never really go over 1K in data 
 unsigned char ReadBuff[1024]; 
 
 int BytesRecv = recv(m_VCSocket, (char *)ReadBuff, 1024, 0); 
 
 if ((BytesRecv == 0) || (BytesRecv == SOCKET_ERROR)) 
 { 
  m_VCServerConnected = FALSE; 
 } 
 else 
 { 
  //Parse the data 
  sVCPacket RecvPkt; 
 
  //Copy it over 
  memcpy(&RecvPkt, ReadBuff,BytesRecv); 
 
  //Push it onto the deque 
  m_PktContainer.push_back(RecvPkt); 
 
  //Send notification to main app 
  ::PostMessage(m_MainHwnd, WM_DATA_MSG,0,0); 
 } 
} 
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BOOL CSocketConnector::SendData(sVCPacket *Pkt) 
{ 
 if(m_VCServerConnected) 
 { 
  if(send(m_VCSocket, (const char *)Pkt, Pkt-
>DataSize+2*sizeof(int), 0) != SOCKET_ERROR) 
   return TRUE; 
 } 
 
 return FALSE; 
} 
 
 
sVCPacket CSocketConnector::GetNextVCPacket() 
{ 
 //Send the front of the list 
 sVCPacket Pkt = m_PktContainer.front(); 
 return Pkt; 
} 
 
 
void CSocketConnector::PopVCPacket() 
{ 
 m_PktContainer.pop_front(); 
} 
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////////////////////////////////////////////////////////////// 
//Name: SocketConnector.h 
// 
//Author: Procerus Technologies (http://www.procerusuav.com/)  
// 
//Description: Header file for creating socket connections from 
//PCPTAv1 to the VCDI, which passes command packets to the  
//Kestrel Autopilot via VC.  
/////////////////////////////////////////////////////////////// 
// (C) 2005 Procerus Technologies, all rights reserved.   
// It is unlawful to use this source code except by  
// license from Procerus Technologies as part of the  
// Virtual Cockpit and Kestrel Autopilot System. 
/////////////////////////////////////////////////////////////// 
 
#ifndef SOCKET_CONNECTOR_H 
#define SOCKET_CONNECTOR_H 
 
#include <deque> 
 
//Message to notify main window we received data 
#define WM_DATA_MSG   WM_USER + 1055 
 
 
//Packet types defined in VC interface 
//This packet when received by the VC will pass all data straight to 
//the autopilots 
#define VC_PASSTHROUGH   10 
//This packet setups the VC to forward messages it receives from the 
//autopilots 
#define VC_FRWD_PKT_SETUP  20  
 
struct sVCPacket 
{ 
 //Packet interface type to the VC Development server 
 int VCPacketType;  

//The size of the data in the char array 
 int DataSize; 

//The data associated with this packet 
 unsigned char PktData[1024];   
}; 
 
struct sPassThrough 
{ 

//The destination address of the pass through packet...usually 
//airplane address 

 unsigned short DestAddr; 
//The data that makes up the pass through packet...refer to 
//Kestrel Communications Guide 

 unsigned char PassData[128]; }; 
 
class CSocketConnector 
{ 

public: 
  CSocketConnector(const CString ipAdress, HWND MainHwnd); 
  ~CSocketConnector(); 
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//Returns if it is still connected to the Slope Soaring 
//Simulator 

  BOOL IsConnected() const { return m_VCServerConnected; }; 
 
  //Read Data from the Socket 
  void ReadData(); 
 
  //Sends the data and returns if it was successful or not 
  BOOL SendData(sVCPacket *Pkt); 
 
  //Returns a single packet  
  sVCPacket GetNextVCPacket(); 
 
  //Removes the parsed comm packet 
  void PopVCPacket(); 
 
  //Returns the number of packets in queue 

int NumVCPackets(){ if(m_PktContainer.empty()) return 0; 
return (int)m_PktContainer.size(); } 

 
protected: 

//Runs the ReadThread and continues reading until 
//disconnected 

  static UINT StartReadThread(LPVOID pParam); 
 

protected: 
//Used to load the Driver for the socket 

  WSADATA m_wsaData; 
//The Socket to send/reveieve the data to the VC 

   SOCKET m_VCSocket;  
  //Socket to the server 
  sockaddr_in clientService;  
  
  //If a connect is established 
  BOOL volatile m_VCServerConnected; 

//If the Read Thread is still running  
  BOOL volatile m_DataThreadRunning;   
  //Holds the packets that haven't been read by the dev app 
  std::deque<sVCPacket> m_PktContainer; 
  //Main window handle for sending messages 
  HWND m_MainHwnd;     
}; 
 
#endif 
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